A261353 Least positive integer k such that prime(prime(k))*prime(prime(k*n)) = prime(p)+2 for some prime p.
11, 2, 1, 606, 350, 166, 53, 1865, 7, 45, 1308, 68, 215, 61, 256, 13, 248, 90, 1, 1779, 796, 1, 4, 444, 650, 55, 157, 303, 82, 84, 25, 3, 1912, 621, 128, 205, 164, 1091, 61, 12, 337, 1, 303, 15, 23, 418, 212, 23, 2494, 1, 472, 771, 1, 36, 8, 46, 8, 18, 264, 22, 725, 85, 65, 231, 606, 3, 1, 43, 144, 164
Offset: 1
Keywords
Examples
a(1) = 11 since prime(prime(11))*prime(prime(11*1)) = prime(31)^2 = 127^2 = 16129 = prime(1877)+2 with 1877 prime. a(4) = 606 since prime(prime(606))*prime(prime(606*4)) = prime(4457)*prime(21589) = 42643*244471 = 10424976853 = prime(473490161)+2 with 473490161 prime.
References
- Jing-run Chen, On the representation of a large even integer as the sum of a prime and a product of at most two primes, Sci. Sinica 16(1973), 157-176.
- Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..382
- Zhi-Wei Sun, Checking the conjecture for r = a/b with a,b = 1,...,31
- Zhi-Wei Sun, Problems on combinatorial properties of primes, arXiv:1402.6641 [math.NT], 2014.
Programs
-
Mathematica
f[n_]:=Prime[Prime[n]] PQ[p_]:=PrimeQ[p]&&PrimeQ[PrimePi[p]] Do[k=0;Label[bb];k=k+1;If[PQ[f[k]*f[k*n]-2],Goto[aa],Goto[bb]];Label[aa];Print[n, " ", k];Continue,{n,1,70}]
Comments