A261354 Primes p such that prime(p)^2 - 2 = prime(q) for some prime q.
31, 191, 541, 809, 1153, 1301, 2221, 3037, 3847, 4049, 4159, 5441, 8243, 10177, 12277, 13681, 14783, 15619, 17903, 19463, 20897, 22697, 24517, 25163, 25847, 25849, 26633, 26647, 27329, 27407, 28051, 32653, 35059, 35747, 36341, 36527, 37369, 37811, 38609, 40949, 42737, 46679, 51061, 51607, 54443, 54679, 56113, 57637, 60887, 61493
Offset: 1
Keywords
Examples
a(1) = 31 since 31 is a prime, and prime(31)^2-2 = 127^2-2 = 16127 = prime(1877) with 1877 prime.
References
- Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..100
- Zhi-Wei Sun, Problems on combinatorial properties of primes, arXiv:1402.6641 [math.NT], 2014.
Programs
-
Mathematica
PQ[n_]:=PrimeQ[n]&&PrimeQ[PrimePi[n]] f[k_]:=Prime[Prime[k]]^2-2 n=0;Do[If[PQ[f[k]],n=n+1;Print[n," ",Prime[k]]],{k,1,6200}]
Comments