A261365 Prime-numbered rows of Pascal's triangle.
1, 2, 1, 1, 3, 3, 1, 1, 5, 10, 10, 5, 1, 1, 7, 21, 35, 35, 21, 7, 1, 1, 11, 55, 165, 330, 462, 462, 330, 165, 55, 11, 1, 1, 13, 78, 286, 715, 1287, 1716, 1716, 1287, 715, 286, 78, 13, 1, 1, 17, 136, 680, 2380, 6188, 12376, 19448, 24310, 24310, 19448, 12376, 6188, 2380, 680, 136, 17, 1, 1, 19, 171, 969, 3876, 11628, 27132, 50388, 75582, 92378, 92378, 75582, 50388, 27132, 11628, 3876, 969, 171, 19, 1
Offset: 1
Examples
1,2,1; 1,3,3,1; 1,5,10,10,5,1; 1,7,21,35,35,21,7,1; 1,11,55,165,330,462,462,330,165,55,11,1;
Links
- Maghraoui Abdelkader, Table of n, a(n) for n = 1..4273
Programs
-
Mathematica
Table[Binomial[Prime@ n, k], {n, 8}, {k, 0, Prime@ n}] // Flatten (* Michael De Vlieger, Aug 20 2015 *)
-
PARI
forprime(n=2, 20, for(k=0,n,print1(binomial(n,k),", ")))
Formula
T(n,k) = binomial(prime(n), k).