A261377 Number of (n+2)X(5+2) 0..1 arrays with each 3X3 subblock having clockwise perimeter pattern 00001011 00010101 or 01010101.
154, 266, 869, 2282, 5633, 14312, 39494, 99168, 261501, 666722, 1785513, 4510376, 12029879, 30520850, 81445076, 206279050, 550615794, 1395355514, 3723483907, 9434612056, 25180483084, 63803504988, 170274449783, 431455039974
Offset: 1
Keywords
Examples
Some solutions for n=4 ..1..0..1..0..1..0..0....0..0..0..1..0..1..0....1..0..1..0..1..0..1 ..0..1..0..0..0..1..0....1..0..1..0..1..0..1....0..1..0..1..0..1..0 ..1..0..1..0..1..0..1....0..1..0..1..0..0..0....1..0..1..0..1..0..1 ..0..1..0..1..0..1..0....0..0..1..0..1..0..1....0..1..0..0..0..1..0 ..0..0..1..0..1..0..0....0..1..0..1..0..1..0....1..0..1..0..1..0..0 ..0..1..0..0..0..1..0....1..0..1..0..1..0..1....0..1..0..1..0..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A261380.
Formula
Empirical: a(n) = 31*a(n-4) +97*a(n-6) +39*a(n-8) -144*a(n-10) -29*a(n-12) +189*a(n-14) -125*a(n-16) -14*a(n-18) +40*a(n-20) -13*a(n-22) -a(n-24) +a(n-26) for n>29
Comments