cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261380 T(n,k)=Number of (n+2)X(k+2) 0..1 arrays with each 3X3 subblock having clockwise perimeter pattern 00001011 00010101 or 01010101.

This page as a plain text file.
%I A261380 #4 Aug 17 2015 08:33:10
%S A261380 36,39,39,60,41,60,97,82,82,97,154,157,202,157,154,247,266,424,424,
%T A261380 266,247,392,470,869,1040,869,470,392,618,864,1714,2282,2282,1714,864,
%U A261380 618,977,1553,3778,5254,5633,5254,3778,1553,977,1548,2758,7462,12500,14312
%N A261380 T(n,k)=Number of (n+2)X(k+2) 0..1 arrays with each 3X3 subblock having clockwise perimeter pattern 00001011 00010101 or 01010101.
%C A261380 Table starts
%C A261380 ...36...39....60.....97....154.....247......392......618.......977.......1548
%C A261380 ...39...41....82....157....266.....470......864.....1553......2758.......4960
%C A261380 ...60...82...202....424....869....1714.....3778.....7462.....15888......31618
%C A261380 ...97..157...424...1040...2282....5254....12500....28885.....66332.....154413
%C A261380 ..154..266...869...2282...5633...14312....39494....99168....261501.....666722
%C A261380 ..247..470..1714...5254..14312...42302...128998...377183...1099308....3261560
%C A261380 ..392..864..3778..12500..39494..128998...461576..1468008...5004588...16267396
%C A261380 ..618.1553..7462..28885..99168..377183..1468008..5441268..20216794...76589561
%C A261380 ..977.2758.15888..66332.261501.1099308..5004588.20216794..87288274..362866846
%C A261380 .1548.4960.31618.154413.666722.3261560.16267396.76589561.362866846.1757770516
%H A261380 R. H. Hardin, <a href="/A261380/b261380.txt">Table of n, a(n) for n = 1..1104</a>
%F A261380 Empirical for column k:
%F A261380 k=1: a(n) = a(n-2) +3*a(n-4) +2*a(n-6) for n>12
%F A261380 k=2: a(n) = a(n-2) +6*a(n-4) +4*a(n-6) -a(n-8) for n>9
%F A261380 k=3: a(n) = a(n-2) +11*a(n-4) +13*a(n-6) -2*a(n-8) -2*a(n-10) +4*a(n-12) for n>17
%F A261380 k=4: [order 20] for n>22
%F A261380 k=5: [order 26] for n>29
%F A261380 k=6: [order 40] for n>44
%F A261380 k=7: [order 54] for n>59
%e A261380 Some solutions for n=4 k=4
%e A261380 ..0..1..0..1..0..0....0..1..0..1..0..1....0..0..0..1..0..0....0..0..0..1..0..1
%e A261380 ..1..0..0..0..1..0....1..0..1..0..1..0....1..0..1..0..1..0....1..0..1..0..1..0
%e A261380 ..0..1..0..1..0..1....0..1..0..1..0..1....0..1..0..1..0..1....0..1..0..1..0..0
%e A261380 ..1..0..1..0..1..0....1..0..1..0..1..0....1..0..1..0..1..0....0..0..1..0..1..0
%e A261380 ..0..1..0..1..0..0....0..1..0..1..0..1....0..0..0..1..0..0....0..1..0..1..0..1
%e A261380 ..1..0..0..0..1..0....1..0..1..0..0..0....0..0..1..0..1..0....1..0..1..0..0..0
%K A261380 nonn,tabl
%O A261380 1,1
%A A261380 _R. H. Hardin_, Aug 17 2015