cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A261377 Number of (n+2)X(5+2) 0..1 arrays with each 3X3 subblock having clockwise perimeter pattern 00001011 00010101 or 01010101.

Original entry on oeis.org

154, 266, 869, 2282, 5633, 14312, 39494, 99168, 261501, 666722, 1785513, 4510376, 12029879, 30520850, 81445076, 206279050, 550615794, 1395355514, 3723483907, 9434612056, 25180483084, 63803504988, 170274449783, 431455039974
Offset: 1

Views

Author

R. H. Hardin, Aug 17 2015

Keywords

Comments

Column 5 of A261380.

Examples

			Some solutions for n=4
..1..0..1..0..1..0..0....0..0..0..1..0..1..0....1..0..1..0..1..0..1
..0..1..0..0..0..1..0....1..0..1..0..1..0..1....0..1..0..1..0..1..0
..1..0..1..0..1..0..1....0..1..0..1..0..0..0....1..0..1..0..1..0..1
..0..1..0..1..0..1..0....0..0..1..0..1..0..1....0..1..0..0..0..1..0
..0..0..1..0..1..0..0....0..1..0..1..0..1..0....1..0..1..0..1..0..0
..0..1..0..0..0..1..0....1..0..1..0..1..0..1....0..1..0..1..0..1..0
		

Crossrefs

Cf. A261380.

Formula

Empirical: a(n) = 31*a(n-4) +97*a(n-6) +39*a(n-8) -144*a(n-10) -29*a(n-12) +189*a(n-14) -125*a(n-16) -14*a(n-18) +40*a(n-20) -13*a(n-22) -a(n-24) +a(n-26) for n>29

A261372 Number of (n+2)X(n+2) 0..1 arrays with each 3X3 subblock having clockwise perimeter pattern 00001011 00010101 or 01010101.

Original entry on oeis.org

36, 41, 202, 1040, 5633, 42302, 461576, 5441268, 87288274, 1757770516, 47269754142, 1497418790742, 65202132975489, 3410709440318090, 240487233522340499, 20318813275802198468, 2337266627779577763890
Offset: 1

Views

Author

R. H. Hardin, Aug 17 2015

Keywords

Comments

Diagonal of A261380.

Examples

			Some solutions for n=4
..1..0..1..0..0..0....1..0..0..1..0..1....0..0..0..1..0..1....1..0..1..0..1..0
..0..1..0..1..0..1....1..0..0..0..1..0....1..0..1..0..1..0....0..1..0..1..0..0
..0..0..1..0..1..0....0..1..0..1..0..0....0..1..0..1..0..1....1..0..1..0..1..0
..0..1..0..1..0..1....1..0..1..0..1..0....1..0..1..0..1..0....0..0..0..1..0..1
..1..0..1..0..0..0....0..1..0..1..0..1....0..0..0..1..0..1....1..0..1..0..0..0
..0..0..0..1..0..0....0..0..1..0..1..0....0..0..1..0..0..0....0..1..0..1..0..0
		

Crossrefs

Cf. A261380.

A261373 Number of (n+2) X (1+2) 0..1 arrays with each 3 X 3 subblock having clockwise perimeter pattern 00001011 00010101 or 01010101.

Original entry on oeis.org

36, 39, 60, 97, 154, 247, 392, 618, 977, 1548, 2461, 3894, 6176, 9774, 15513, 24552, 38963, 61662, 97854, 154866, 245769, 388956, 617257, 976878, 1550272, 2453478, 3893581, 6162024, 9778911, 15476214, 24560198, 38869242, 61684093, 97621932
Offset: 1

Views

Author

R. H. Hardin, Aug 17 2015

Keywords

Examples

			Some solutions for n=4:
  0 1 0   1 0 0   1 0 1   1 0 0   0 1 0   1 0 1   1 0 1
  1 0 0   1 0 0   0 0 1   0 1 0   1 0 1   0 0 1   0 1 0
  0 1 0   0 1 0   0 0 0   1 0 1   0 1 0   0 0 0   0 0 1
  1 0 1   1 0 1   0 1 1   0 1 0   1 0 1   1 0 1   0 1 0
  0 1 0   0 1 0   1 1 0   1 0 0   0 0 0   0 1 0   1 0 1
  0 0 1   1 0 1   0 0 0   0 1 0   0 0 1   1 0 0   0 0 0
		

Crossrefs

Column 1 of A261380.

Formula

Empirical: a(n) = a(n-2) + 3*a(n-4) + 2*a(n-6) for n>12.
Empirical g.f.: x*(36 + 39*x + 24*x^2 + 58*x^3 - 14*x^4 + 33*x^5 - 14*x^6 + 2*x^7 + 3*x^8 - 5*x^9 - 2*x^11) / (1 - x^2 - 3*x^4 - 2*x^6). - Colin Barker, Dec 30 2018

A261374 Number of (n+2) X (2+2) 0..1 arrays with each 3 X 3 subblock having clockwise perimeter pattern 00001011 00010101 or 01010101.

Original entry on oeis.org

39, 41, 82, 157, 266, 470, 864, 1553, 2758, 4960, 8924, 16001, 28662, 51503, 92374, 165796, 297284, 533858, 957252, 1718645, 3081790, 5533474, 9922064, 17814980, 31944528, 57356546, 102846820, 184661677, 331120454, 594527399, 1066057422
Offset: 1

Views

Author

R. H. Hardin, Aug 17 2015

Keywords

Examples

			Some solutions for n=4:
  0 1 0 1     0 0 1 0     1 0 0 1     0 1 0 0     1 0 0 0
  1 0 1 0     0 0 0 1     1 0 0 0     1 0 0 0     0 1 0 1
  0 1 0 1     1 0 1 0     0 1 0 1     0 1 0 1     1 0 1 0
  1 0 1 0     0 1 0 1     1 0 1 0     1 0 1 0     0 0 0 1
  0 1 0 1     0 0 1 0     0 1 0 1     0 1 0 0     0 0 1 0
  1 0 1 0     0 1 0 1     1 0 0 0     0 0 1 0     1 1 0 1
		

Crossrefs

Column 2 of A261380.

Formula

Empirical: a(n) = a(n-2) + 6*a(n-4) + 4*a(n-6) - a(n-8) for n > 9.
Empirical g.f.: x*(39 + 41*x + 43*x^2 + 116*x^3 - 50*x^4 + 67*x^5 - 50*x^6 - 23*x^7 + 9*x^8) / ((1 + x + 2*x^3 - x^4)*(1 - x - 2*x^3 - x^4)). - Colin Barker, Dec 30 2018

A261375 Number of (n+2)X(3+2) 0..1 arrays with each 3X3 subblock having clockwise perimeter pattern 00001011 00010101 or 01010101.

Original entry on oeis.org

60, 82, 202, 424, 869, 1714, 3778, 7462, 15888, 31618, 68245, 135058, 290195, 575938, 1238957, 2455954, 5282429, 10475722, 22530337, 44674906, 96090169, 190539730, 409810129, 812624530, 1747814377, 3465775738, 7454228289, 14781184618
Offset: 1

Views

Author

R. H. Hardin, Aug 17 2015

Keywords

Comments

Column 3 of A261380.

Examples

			Some solutions for n=4
..0..0..1..0..1....0..1..0..0..0....1..0..1..0..1....0..1..0..1..0
..0..1..0..1..0....1..0..1..0..1....0..0..0..1..0....1..0..1..0..1
..1..0..1..0..1....0..1..0..1..0....1..0..1..0..0....0..1..0..1..0
..0..1..0..1..0....1..0..1..0..1....0..1..0..1..0....1..0..1..0..1
..1..0..1..0..1....0..1..0..1..0....0..0..1..0..1....0..1..0..0..0
..0..1..0..0..0....0..0..1..0..1....0..1..0..1..0....0..0..1..0..1
		

Crossrefs

Cf. A261380.

Formula

Empirical: a(n) = a(n-2) +11*a(n-4) +13*a(n-6) -2*a(n-8) -2*a(n-10) +4*a(n-12) for n>17

A261376 Number of (n+2)X(4+2) 0..1 arrays with each 3X3 subblock having clockwise perimeter pattern 00001011 00010101 or 01010101.

Original entry on oeis.org

97, 157, 424, 1040, 2282, 5254, 12500, 28885, 66332, 154413, 358786, 830309, 1923846, 4465820, 10349526, 23993883, 55620850, 129004265, 298983410, 693371845, 1607151330, 3727183505, 8638778942, 20034575762, 46436324264
Offset: 1

Views

Author

R. H. Hardin, Aug 17 2015

Keywords

Comments

Column 4 of A261380.

Examples

			Some solutions for n=4
..1..0..1..0..1..0....1..0..0..0..1..0....1..0..1..0..1..0....0..1..0..1..0..0
..0..1..0..1..0..1....0..1..0..1..0..1....0..1..0..1..0..0....0..0..1..0..1..0
..1..0..1..0..0..0....1..0..1..0..1..0....1..0..1..0..1..0....0..1..0..1..0..1
..0..0..0..1..0..1....0..1..0..1..0..1....0..1..0..1..0..1....1..0..1..0..1..0
..1..0..1..0..1..0....0..0..1..0..0..0....1..0..1..0..1..0....0..1..0..0..0..1
..0..1..0..1..0..1....0..1..0..1..0..1....0..1..0..1..0..1....1..0..1..0..1..0
		

Crossrefs

Cf. A261380.

Formula

Empirical: a(n) = a(n-2) +18*a(n-4) +32*a(n-6) -7*a(n-8) -33*a(n-10) +13*a(n-12) +25*a(n-14) -28*a(n-16) +9*a(n-18) -a(n-20) for n>22

A261378 Number of (n+2)X(6+2) 0..1 arrays with each 3X3 subblock having clockwise perimeter pattern 00001011 00010101 or 01010101.

Original entry on oeis.org

247, 470, 1714, 5254, 14312, 42302, 128998, 377183, 1099308, 3261560, 9647696, 28358158, 83587624, 246835566, 727709732, 2144744412, 6325797274, 18656814748, 55007382412, 162201500248, 478326263928, 1410502041960, 4159149074114
Offset: 1

Views

Author

R. H. Hardin, Aug 17 2015

Keywords

Comments

Column 6 of A261380.

Examples

			Some solutions for n=4
..0..1..0..1..0..1..0..1....0..1..0..0..0..1..0..1....0..1..0..1..0..0..0..1
..1..0..1..0..1..0..0..0....0..0..1..0..1..0..0..0....1..0..1..0..1..0..1..0
..0..1..0..1..0..1..0..1....0..1..0..1..0..1..0..1....0..0..0..1..0..1..0..1
..1..0..1..0..1..0..1..0....1..0..1..0..1..0..1..0....1..0..1..0..1..0..1..0
..0..0..0..1..0..1..0..0....0..1..0..0..0..1..0..1....0..1..0..1..0..1..0..1
..0..0..1..0..0..0..1..0....0..0..1..0..1..0..0..0....1..0..1..0..1..0..0..0
		

Crossrefs

Cf. A261380.

Formula

Empirical: a(n) = a(n-2) +54*a(n-4) +147*a(n-6) -232*a(n-8) -760*a(n-10) +1201*a(n-12) +1735*a(n-14) -4951*a(n-16) +1746*a(n-18) +4365*a(n-20) -3877*a(n-22) -2176*a(n-24) +4748*a(n-26) -2239*a(n-28) +25*a(n-30) +151*a(n-32) +117*a(n-34) -35*a(n-36) -2*a(n-38) -a(n-40) for n>44

A261379 Number of (n+2)X(7+2) 0..1 arrays with each 3X3 subblock having clockwise perimeter pattern 00001011 00010101 or 01010101.

Original entry on oeis.org

392, 864, 3778, 12500, 39494, 128998, 461576, 1468008, 5004588, 16267396, 56289594, 180787146, 623643757, 2013680076, 6945409809, 22381289794, 77243050853, 249062829770, 859199611263, 2770077481724, 9558157038040
Offset: 1

Views

Author

R. H. Hardin, Aug 17 2015

Keywords

Comments

Column 7 of A261380.

Examples

			Some solutions for n=4
..1..0..1..0..1..0..1..0..1....0..1..0..1..0..1..0..0..0
..0..1..0..1..0..1..0..0..0....1..0..0..0..1..0..1..0..1
..1..0..0..0..1..0..1..0..1....0..1..0..1..0..1..0..1..0
..0..1..0..1..0..1..0..1..0....1..0..1..0..1..0..1..0..1
..1..0..1..0..1..0..1..0..0....0..1..0..1..0..1..0..1..0
..0..0..0..1..0..0..0..1..0....1..0..0..0..1..0..0..0..1
		

Crossrefs

Cf. A261380.

Formula

Empirical: a(n) = a(n-2) +91*a(n-4) +334*a(n-6) -779*a(n-8) -3685*a(n-10) +7226*a(n-12) +20922*a(n-14) -62627*a(n-16) -27148*a(n-18) +249596*a(n-20) -142965*a(n-22) -601602*a(n-24) +1185157*a(n-26) -586527*a(n-28) -552103*a(n-30) +736485*a(n-32) -49406*a(n-34) -272061*a(n-36) +63499*a(n-38) +50155*a(n-40) -1001*a(n-42) -4198*a(n-44) -4416*a(n-46) -1042*a(n-48) -51*a(n-50) -100*a(n-52) -10*a(n-54) for n>59
Showing 1-8 of 8 results.