This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A261381 #7 Aug 18 2015 09:01:09 %S A261381 1,0,1,0,3,24,15,504,105,9072,436401,166320,28750491,3243240, %T A261381 1307809503,27965161224,52309001745,3795543015264,2000776242465, %U A261381 324424646818272,17268536366932851,22708075360010040,3974396337125445231,1436250980764880280,548178165969608527353 %N A261381 Number of permutations sigma of [n] without fixed points such that sigma^10 = Id. %H A261381 Alois P. Heinz, <a href="/A261381/b261381.txt">Table of n, a(n) for n = 0..490</a> %F A261381 E.g.f.: exp(x^2/2+x^5/5+x^10/10). %e A261381 a(4) = 3: 2143, 3412, 4321: %e A261381 a(5) = 24: 23451, 23514, 24153, 24531, 25134, 25413, 31452, 31524, 34251, 34512, 35214, 35421, 41253, 41532, 43152, 43521, 45123, 45231, 51234, 51423, 53124, 53412, 54132, 54213. %e A261381 a(6) = 15: 214365, 215634, 216543, 341265, 351624, 361542, 432165, 456123, 465132, 532614, 546213, 564312, 632541, 645231, 654321. %p A261381 a:= proc(n) option remember; `if`(n<0, 0, `if`(n=0, 1, %p A261381 add(mul(n-i, i=1..j-1)*a(n-j), j=[2, 5, 10]))) %p A261381 end: %p A261381 seq(a(n), n=0..30); %Y A261381 Column k=10 of A261430. %Y A261381 Cf. A001147, A052502, A052503, A052504, A053496, A261317. %K A261381 nonn %O A261381 0,5 %A A261381 _Alois P. Heinz_, Aug 17 2015