This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A261384 #9 Aug 17 2015 16:44:03 %S A261384 1,3,12,39,117,331,893,2307,5766,13986,33046,76302,172567,383013, %T A261384 835731,1795236,3801105,7941439,16386777,33423342,67435311,134675784, %U A261384 266385932,522135379,1014643823,1955656848,3740191268,7100290646,13383997996,25058666367 %N A261384 Expansion of Product_{k>=1} (1+x^k)^(2*k-1) / (1-x^k)^(2*k). %C A261384 Convolution of A161870 and A255835. %H A261384 Vaclav Kotesovec, <a href="/A261384/b261384.txt">Table of n, a(n) for n = 0..2000</a> %F A261384 a(n) ~ (7*Zeta(3))^(2/9) * exp(1/6 - Pi^4/(6048*Zeta(3)) - Pi^2 * n^(1/3) / (12*(7*Zeta(3))^(1/3)) + 3/2*(7*Zeta(3))^(1/3) * n^(2/3)) / (A^2 * 2^(1/6) * sqrt(3*Pi) * n^(13/18)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant. %t A261384 nmax = 40; CoefficientList[Series[Product[(1+x^k)^(2*k-1)/(1-x^k)^(2*k), {k, 1, nmax}], {x, 0, nmax}], x] %Y A261384 Cf. A006950, A015128, A156616, A161870, A255835, A261386. %K A261384 nonn %O A261384 0,2 %A A261384 _Vaclav Kotesovec_, Aug 17 2015