A261385 Least positive integer k such that (prime(prime(k))-1)*(prime(prime(k*n))-1) = prime(p)-1 for some prime p.
1, 3, 221, 15, 13, 137, 63, 103, 44, 2, 31, 3, 45, 3, 4, 104, 38, 237, 61, 19, 56, 183, 22, 11, 15, 374, 9, 5, 42, 97, 2, 47, 4, 19, 23, 399, 3, 103, 29, 10, 2, 109, 51, 1, 52, 80, 23, 64, 76, 2, 218, 3, 7, 98, 4, 145, 10, 12, 213, 87, 36, 181, 28, 169, 71, 25, 72, 71, 54, 50
Offset: 1
Keywords
Examples
a(3) = 221 since (prime(prime(221))-1)*(prime(prime(221*3))-1) = (prime(1381)-1)*(prime(4957)-1) = 11446*48130 = 550895980 = prime(28890079)-1 with 28890079 prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..1000
- Zhi-Wei Sun, Checking the conjecture for d = -1 and r = a/b (a,b = 1..60)
- Zhi-Wei Sun, Problems on combinatorial properties of primes, arXiv:1402.6641 [math.NT], 2014.
Programs
-
Mathematica
f[n_]:=Prime[Prime[n]]-1 PQ[p_]:=PrimeQ[p]&&PrimeQ[PrimePi[p]] Do[k=0;Label[bb];k=k+1;If[PQ[f[k]*f[k*n]+1],Goto[aa],Goto[bb]];Label[aa];Print[n," ", k];Continue,{n,1,70}]
Comments