A261387 Number of ways to write n = k + m with 0 < k < m < n such that prime(k) is a primitive root modulo prime(m) and also prime(m) is a primitive root modulo prime(k).
0, 0, 1, 1, 1, 1, 2, 0, 2, 1, 3, 3, 1, 1, 2, 1, 2, 7, 4, 2, 1, 1, 1, 4, 3, 4, 2, 4, 3, 3, 4, 7, 3, 3, 5, 5, 5, 5, 4, 3, 6, 7, 5, 5, 5, 3, 7, 7, 5, 2, 7, 6, 4, 5, 5, 7, 10, 9, 8, 8, 4, 7, 5, 11, 14, 7, 12, 11, 9, 6
Offset: 1
Keywords
Examples
a(7) = 2 since 7 = 1+6 = 3+4, prime(1) = 2 is a primitive root modulo prime(6) = 13 and 13 is a primitive root modulo 2, also prime(3) = 5 is a primitive root modulo prime(4) = 7 and 7 is a primitive root modulo 5. a(22) = 1 since 22 = 4+18, prime(4)= 7 is a primitive root modulo prime(18) = 61 and 61 is a primitive root modulo 7.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..3000
- Zhi-Wei Sun, Checking part (ii) of the conjecture for r = a/b with 1 <= a < b <= 100
- Zhi-Wei Sun, New observations on primitive roots modulo primes, arXiv:1405.0290 [math.NT], 2014.
Programs
-
Mathematica
f[n_]:=Prime[n] Dv[n_]:=Divisors[n] LL[n_]:=Length[Dv[n]] Do[r=0;Do[Do[If[Mod[f[k]^(Part[Dv[f[n-k]-1],i])-1,f[n-k]]==0,Goto[bb]],{i,1,LL[f[n-k]-1]-1}];Do[If[Mod[f[n-k]^(Part[Dv[f[k]-1],i])-1,f[k]]==0,Goto[bb]],{i,1,LL[f[k]-1]-1}]; r=r+1;Label[bb];Continue,{k,1,(n-1)/2}];Print[n," ",r];Continue,{n,1,70}]
Comments