This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A261388 #13 Aug 18 2015 13:19:21 %S A261388 1,1,2,1,3,2,3,3,3,2,3,4,3,3,4,5,5,2,3,3,3,3,7,6,5,4,5,6,4,3,4,4,5,4, %T A261388 6,4,4,4,6,5,6,3,5,4,5,3,4,5,7,4,7,6,4,5,6,7,9,4,4,4,9,5,4,5,4,6,4,3, %U A261388 8,6,7,8,5,5,4,8,5,3,5,7,8,6,6,4,4,6,9,5,4,4,11,11,5,5,5,8,7,5,6 %N A261388 a(n) is the length of the longest stretch of consecutive primitive roots of the multiplicative group modulo prime(n). %H A261388 Joerg Arndt, <a href="/A261388/b261388.txt">Table of n, a(n) for n = 1..9592</a> (terms for all primes < 10^5) %t A261388 a[n_] := 1 + Max[ Join[{0}, Length/@ Select[ Split@ Differences @ PrimitiveRootList @ Prime @ n, #[[1]] == 1 &]]]; Array[a, 99] (* _Giovanni Resta_, Aug 17 2015 *) %o A261388 (PARI) %o A261388 consec_pr(p)= \\ max number of consecutive primroots %o A261388 { %o A261388 my( v = vector(p-1) ); %o A261388 my (g = znprimroot(p) ); %o A261388 for (j=1, p-1, if (gcd(p-1,j)==1, v[lift(g^j)]=1 ) ); %o A261388 my ( m=0, t=0 ); %o A261388 for (j=1, p-1, if ( v[j]==0, t=0 , t+=1; if ( t>m, m=t ); ); ); %o A261388 return(m); %o A261388 } %o A261388 forprime(p=2,10^3, c=consec_pr(p); print1( c,", " ); ); %Y A261388 Cf. A261438 (primes corresponding to records). %K A261388 nonn %O A261388 1,3 %A A261388 _Joerg Arndt_, Aug 17 2015