cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261417 Numbers n such that both ceiling(sqrt(n)) and ceiling(n^(1/3)) divide n.

This page as a plain text file.
%I A261417 #11 Sep 08 2022 08:46:13
%S A261417 1,2,4,6,9,12,36,56,64,90,100,110,132,144,156,210,400,576,702,729,870,
%T A261417 900,930,1056,1089,1122,1332,1560,2352,2450,2970,3600,4032,4096,4556,
%U A261417 4624,4692,5112,5184,5256,5852,7140,8190,9702,9900,12432,14400,15500,15625,16770,16900,17030,18090,18225,18360,19740
%N A261417 Numbers n such that both ceiling(sqrt(n)) and ceiling(n^(1/3)) divide n.
%H A261417 Vincenzo Librandi, <a href="/A261417/b261417.txt">Table of n, a(n) for n = 1..229</a>
%t A261417 Select[Range[200000], Mod[#, Ceiling[#^(1/2)]] == Mod[#, Ceiling[#^(1/3)]] == 0 &] (* _Vincenzo Librandi_, Aug 21 2016 *)
%o A261417 (Magma)
%o A261417 [n: n in [1..2000] | n mod Ceiling((n^(1/2))) eq 0 and n mod Ceiling((n^(1/3))) eq 0 ];
%o A261417 (PARI) is(n) = Mod(n, ceil(sqrt(n)))==0 && Mod(n, ceil(n^(1/3)))==0 \\ _Felix Fröhlich_, Aug 21 2016
%Y A261417 Intersection of A002620 and A261011. Contains A261206 as a subsequence.
%K A261417 nonn,easy
%O A261417 1,2
%A A261417 _N. J. A. Sloane_, Aug 26 2015