This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A261436 #20 Sep 08 2022 08:46:13 %S A261436 3,6,14,38,60,68,72,80,128,158,180,192,264,282,294,350,450,464,548, %T A261436 660,710,734,798,822,878,912,942,984,998,1052,1188,1194,1224,1280, %U A261436 1284,1382,1424,1482,1494,1512,1550,1554,1572,1608,1622,1668,1700,1710,1790,1802 %N A261436 Numbers k such that k^7-1 is a semiprime. %C A261436 Numbers k such that k-1 and k^6+k^5+k^4+k^3+k^2+k+1 are both prime. %C A261436 Intersection of A008864 and A100330. - _Michel Marcus_, Aug 21 2015 %H A261436 Robert Israel, <a href="/A261436/b261436.txt">Table of n, a(n) for n = 1..10000</a> %e A261436 3 is in sequence because 3^7-1 = 2186 = 2*1093, where 2 and 1093 are both prime. %p A261436 with(numtheory): A261436:=n->`if`(bigomega(n^7-1)=2, n, NULL): seq(A261436(n), n=1..2000); # _Wesley Ivan Hurt_, Aug 21 2015 %p A261436 select(n -> isprime(n-1) and isprime(n^6+n^5+n^4+n^3+n^2+n+1), [3,(2*i $i=2..10000)]); # _Robert Israel_, Aug 21 2015 %t A261436 Select[Range[5000], PrimeOmega[#^7 - 1] == 2 &] %o A261436 (Magma) IsSemiprime:=func<i | &+[d[2]: d in Factorization(i)] eq 2>; [n: n in [2..5000] | IsSemiprime(s) where s is n^7- 1]; %o A261436 (PARI) isok(n)=bigomega(n^7-1)==2 \\ _Anders Hellström_, Aug 21 2015 %Y A261436 Cf. similar sequences listed in A261435. %Y A261436 Cf. A105041. %Y A261436 Cf. A008864, A100330. %K A261436 nonn,easy %O A261436 1,1 %A A261436 _Vincenzo Librandi_, Aug 21 2015