cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261440 Array of coefficients A(n,k) of the formal power series P(n,x) read by upwards antidiagonals, where P(n,x) = Sum_{k>=0} A(n,k)*x^k = 1+x*P(n,x)^(1*n)+x^2*P(n,x)^(2*n) for n >= 0.

This page as a plain text file.
%I A261440 #32 Jun 03 2018 02:06:15
%S A261440 1,1,1,1,1,1,1,1,2,0,1,1,3,4,0,1,1,4,11,9,0,1,1,5,21,46,21,0,1,1,6,34,
%T A261440 127,207,51,0,1,1,7,50,268,833,979,127,0,1,1,8,69,485,2299,5763,4797,
%U A261440 323,0,1,1,9,91,794,5130,20838,41401,24138,835,0
%N A261440 Array of coefficients A(n,k) of the formal power series P(n,x) read by upwards antidiagonals, where P(n,x) = Sum_{k>=0} A(n,k)*x^k = 1+x*P(n,x)^(1*n)+x^2*P(n,x)^(2*n) for n >= 0.
%C A261440 The terms define the array A(n,k):
%C A261440   n\k:  0  1   2    3    4     5      6      7       8        9   10  ...
%C A261440     0:  1  1   1    0    0     0      0      0       0        0    0  ...
%C A261440     1:  1  1   2    4    9    21     51    127     323      835  ...
%C A261440     2:  1  1   3   11   46   207    979   4797   24138   123998  ...
%C A261440     3:  1  1   4   21  127   833   5763  41401  305877  2309385  ...
%C A261440     4:  1  1   5   34  268  2299  20838  ...
%C A261440     5:  1  1   6   50  485  5130  ...
%C A261440     6:  1  1   7   69  794  ...
%C A261440     7:  1  1   8   91  ...
%C A261440     8:  1  1   9  116  ...
%C A261440     9:  1  1  10  144  ...
%C A261440    10:  1  ...
%C A261440   etc.
%C A261440 For row 1 see A001006, for row 2 see A006605, and for row 3 see A255673.
%C A261440 Be careful if you use the formulas for n < 0 (DIV0, signed values)!
%C A261440 Nevertheless, it might be interesting ...
%C A261440 Conjecture: The A(n,k), here n > 0, are the number of lattice paths, if
%C A261440 (a) length of path is k*n for the k-th term of row n,
%C A261440 (b) allowed steps are (1,-1), (1,-1+n) and (1,-1+2*n) for terms of row n,
%C A261440 (c) you start at (0,0), end at (k*n,0), and
%C A261440 (d) never cross the x-axis.
%C A261440 This is proved for row 1 (A001006) and row 2 (A006605).
%C A261440 Conjecture: The coefficients B(m,n,k) of the P(n,x)^m (see the formula below), m > 0 and n > 0, are the number of lattice paths, if
%C A261440 (a) length of path is k*n+m-1 (k-th coefficient of P(n,x)^m),
%C A261440 (b) allowed steps are (1,-1), (1,-1+n), and (1,-1+2*n),
%C A261440 (c) you start at (0,m-1), end at (k*n+m-1,0), and
%C A261440 (d) never cross the x-axis.
%C A261440 This is proved for B(1,1,k) (A001006), and B(1,2,k) (A006605). - _Werner Schulte_, Aug 30 2015
%F A261440 A(n,k) = 1/(n*k+1)*Sum_{j=0..k} (-1)^j*binomial(n*k+1, j)*binomial(2*n*k+2-2*j, k-j) (conjectured).
%F A261440 The g.f. P(n,x) of row n of the array A(n,k) satisfy:
%F A261440   P(n,x) = (1 + x*P(n,x)^n)^2/(1 + x*P(n,x)^(n-1)), n > 0.
%F A261440   P(n,x) = P(n-1,x*P(n,x)), n > 0.
%F A261440   P(n,x) = P(n-2,x*P(n,x)^2), n > 1.
%F A261440   etc.
%F A261440   P(n,x) = P(0,x*P(n,x)^n), n >= 0.
%F A261440 The coefficients B(m,n,k) of the P(n,x)^m are:
%F A261440   B(m,n,k) = m/(n*k + m)*(Sum_{j=0..k} (-1)^j*binomial(n*k+m, j)* binomial(2*n*k + 2*m - 2*j, k - j)), if m > 0, and n > 0 (conjectured).
%F A261440 A(n,0) = A(n,1) = 1, n >= 0.
%F A261440 A(n,2) = n+1, n >= 0.
%F A261440 A(n,3) = n*(3*n + 5)/2, n >= 0.
%F A261440 A(n,4) = n*(8*n^2 + 18*n + 1)/3, n >= 0.
%F A261440 A(n,5) = n*(125*n^3 + 350*n^2 + 55*n - 26)/24, n >= 0.
%F A261440 P(n,x) = exp(Sum_{k>=1} 1/(n*k)*(Sum{j=0..k} (-1)^j*binomial(n*k,j)* binomial(2*n*k-2*j,k-j))) for n > 0 (conjectured). - _Werner Schulte_, Sep 20 2015
%F A261440 P(n,x/(1+x+x^2)^n) = 1+x+x^2 for n >= 0. - _Werner Schulte_, Oct 20 2015
%e A261440 The terms of the array A(n,k) read by upwards antidiagonals define the triangle T(n,m) = A(n-m,m) for 0 <= m <= n, i.e.
%e A261440   1;
%e A261440   1, 1;
%e A261440   1, 1, 1;
%e A261440   1, 1, 2,  0;
%e A261440   1, 1, 3,  4,  0;
%e A261440   1, 1, 4, 11,  9,  0;
%e A261440   1, 1, 5, 21, 46, 21, 0;
%e A261440   etc.
%Y A261440 Cf. A001006, A006605, A255673.
%K A261440 nonn,tabl,easy
%O A261440 0,9
%A A261440 _Werner Schulte_, Aug 18 2015