This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A261452 #9 Oct 01 2015 02:13:47 %S A261452 1,2,8,24,66,176,448,1096,2608,6042,13664,30280,65856,140800,296432, %T A261452 615264,1260306,2550368,5102616,10101000,19797344,38439088,73976160, %U A261452 141179480,267300752,502283714,937077808,1736296304,3196144032,5846632656,10631038400 %N A261452 Expansion of Product_{k>=1} ((1+x^k)/(1-x^k))^(2*k-1). %C A261452 Convolution of A253289 and A255835. %H A261452 Vaclav Kotesovec, <a href="/A261452/b261452.txt">Table of n, a(n) for n = 0..1000</a> %H A261452 Vaclav Kotesovec, <a href="http://arxiv.org/abs/1509.08708">A method of finding the asymptotics of q-series based on the convolution of generating functions</a>, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 26. %F A261452 a(n) ~ 2^(1/3) * (7*Zeta(3))^(1/18) * exp(1/6 - Pi^4/(672*Zeta(3)) - Pi^2 * n^(1/3)/(4*(7*Zeta(3))^(1/3)) + 3/2*(7*Zeta(3))^(1/3) * n^(2/3)) / (A^2 * sqrt(3) * n^(5/9)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant. %t A261452 nmax = 40; CoefficientList[Series[Product[((1+x^k)/(1-x^k))^(2*k-1), {k, 1, nmax}], {x, 0, nmax}], x] %Y A261452 Cf. A156616, A261386, A005309, A261451, A261389. %K A261452 nonn %O A261452 0,2 %A A261452 _Vaclav Kotesovec_, Aug 19 2015