A261488 Number of triples (x, y, x mod y) such that x > y are divisors of n and x mod y is an anti-divisor of n.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 3, 0, 0, 0, 0, 2, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 2, 0, 3, 0, 1, 0, 0, 0, 0
Offset: 1
Keywords
Examples
a(45) = 2 with triples (5, 3, 5 mod 3) and (15, 9, 15 mod 9) since 3, 5, 9, and 15 are divisors of 45 and 5 mod 3 = 2 and 15 mod 9 = 6 are anti-divisors of 45.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
Programs
-
PARI
a(n)=my(d=divisors(n)); sum(i=1,#d-1, sum(j=i+1,#d, my(z=d[j]%d[i]); z && n%z && if(z%2, (2*n+1)%z==0 || (2*n-1)%z==0, (2*n)%z==0))) \\ Charles R Greathouse IV, Aug 26 2015
Comments