This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A261489 #11 Feb 02 2017 03:43:54 %S A261489 1,2,4,8,25,82,313,1318,6098,30603,165282,954065,5853242,37987146, %T A261489 259751877,1864926846,14016442573,109985575616,898948324164, %U A261489 7637000950875,67310106587314,614420757079213,5799709014601124,56530981389520624,568255134674637557 %N A261489 Number of partitions of subsets of {1,...,n}, where consecutive integers and the elements in {1, n} are required to be in different parts. %H A261489 Alois P. Heinz, <a href="/A261489/b261489.txt">Table of n, a(n) for n = 0..250</a> %e A261489 a(3) = 8: {}, 1, 2, 3, 1|2, 1|3, 2|3, 1|2|3. %e A261489 a(4) = 25: {}, 1, 2, 3, 4, 1|2, 1|3, 13, 1|4, 2|3, 2|4, 24, 3|4, 1|2|3, 13|2, 1|2|4, 1|24, 1|3|4, 13|4, 2|3|4, 24|3, 1|2|3|4, 13|2|4, 1|3|24, 13|24. %p A261489 g:= proc(n, l, t, f) option remember; `if`(n=0, 1, %p A261489 add(`if`(l>0 and j=l or f=1 and n=1 and j=1, 0, %p A261489 g(n-1, j, t+`if`(j=t, 1, 0), f)), j=0..t)) %p A261489 end: %p A261489 a:= n-> `if`(n=0, 1, g(n-1, 0, 1, 0)+g(n-1, 1, 2, 1)): %p A261489 seq(a(n), n=0..25); %t A261489 g[n_, l_, t_, f_] := g[n, l, t, f] = If[n==0, 1, Sum[If[l>0 && j==l || f==1 && n==1 && j==1, 0, g[n-1, j, t+If[j==t, 1, 0], f]], {j, 0, t}]]; a[n_] := If[n==0, 1, g[n-1, 0, 1, 0]+g[n-1, 1, 2, 1]]; Table[a[n], {n, 0, 25}] (* _Jean-François Alcover_, Feb 02 2017, translated from Maple *) %Y A261489 Cf. A247100, A261134, A261041, A261492. %K A261489 nonn %O A261489 0,2 %A A261489 _Alois P. Heinz_, Aug 21 2015