This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A261503 #17 Feb 16 2025 08:33:26 %S A261503 1,1,10,136,2290,42376,834472,17125354,362345362,7847250409, %T A261503 173103115760,3875837737520,87857163416200,2012268157890524, %U A261503 46497242510288804,1082614775186919136,25374686712458407442,598217593341171422090,14176230568954212214234 %N A261503 Number of necklaces with n white beads and 9*n black beads. %H A261503 Alois P. Heinz, <a href="/A261503/b261503.txt">Table of n, a(n) for n = 0..710</a> %H A261503 F. Ruskey, <a href="http://combos.org/necklace">Necklaces, Lyndon words, De Bruijn sequences, etc.</a> %H A261503 F. Ruskey, <a href="/A000011/a000011.pdf">Necklaces, Lyndon words, De Bruijn sequences, etc.</a> [Cached copy, with permission, pdf format only] %H A261503 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Necklace.html">Necklace</a> %H A261503 Wikipedia, <a href="https://en.wikipedia.org/wiki/Necklace_(combinatorics)">Necklace (combinatorics)</a> %H A261503 <a href="/index/Ne#necklaces">Index entries for sequences related to necklaces</a> %F A261503 a(n) = 1/(10*n) * Sum_{d|n} C(10*n/d,n/d) * A000010(d) for n>0, a(0) = 1. %F A261503 a(n) ~ 10^(10*n-1/2) / (sqrt(2*Pi) * 9^(9*n+1/2) * n^(3/2)). - _Vaclav Kotesovec_, Aug 22 2015 %p A261503 with(numtheory): %p A261503 a:= n-> `if`(n=0, 1, add(binomial(10*n/d, n/d) %p A261503 *phi(d), d=divisors(n))/(10*n)): %p A261503 seq(a(n), n=0..25); %Y A261503 Column k=9 of A261494. %K A261503 nonn %O A261503 0,3 %A A261503 _Alois P. Heinz_, Aug 21 2015