This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A261504 #21 Feb 16 2025 08:33:26 %S A261504 1,1,11,166,3091,63251,1376738,31231278,730421043,17485161178, %T A261504 426342182761,10551652603526,264383070217234,6693356751004275, %U A261504 170957058318902538,4399826606699783666,113989308154754290611,2970465160237643057033,77808659386282667142686 %N A261504 Number of necklaces with n white beads and 10*n black beads. %C A261504 In general, for k>=1 is column k of A261494 asymptotic to (k+1)^((k+1)*n-1/2) / (sqrt(2*Pi) * k^(k*n+1/2) * n^(3/2)). - _Vaclav Kotesovec_, Aug 22 2015 %H A261504 Alois P. Heinz, <a href="/A261504/b261504.txt">Table of n, a(n) for n = 0..690</a> %H A261504 F. Ruskey, <a href="http://combos.org/necklace">Necklaces, Lyndon words, De Bruijn sequences, etc.</a> %H A261504 F. Ruskey, <a href="/A000011/a000011.pdf">Necklaces, Lyndon words, De Bruijn sequences, etc.</a> [Cached copy, with permission, pdf format only] %H A261504 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Necklace.html">Necklace</a> %H A261504 Wikipedia, <a href="https://en.wikipedia.org/wiki/Necklace_(combinatorics)">Necklace (combinatorics)</a> %H A261504 <a href="/index/Ne#necklaces">Index entries for sequences related to necklaces</a> %F A261504 a(n) = 1/(11*n) * Sum_{d|n} C(11*n/d,n/d) * A000010(d) for n>0, a(0) = 1. %F A261504 a(n) ~ 11^(11*n-1/2) / (sqrt(2*Pi) * 10^(10*n+1/2) * n^(3/2)). - _Vaclav Kotesovec_, Aug 22 2015 %p A261504 with(numtheory): %p A261504 a:= n-> `if`(n=0, 1, add(binomial(11*n/d, n/d) %p A261504 *phi(d), d=divisors(n))/(11*n)): %p A261504 seq(a(n), n=0..25); %t A261504 a[n_] := If[n == 0, 1, DivisorSum[n, Binomial[11*n/#, n/#]*EulerPhi[#]&]/ (11*n)]; %t A261504 Table[a[n], {n, 0, 25}] (* _Jean-François Alcover_, Mar 28 2017, translated from Maple *) %Y A261504 Column k=10 of A261494. %K A261504 nonn %O A261504 0,3 %A A261504 _Alois P. Heinz_, Aug 21 2015