This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A261516 #47 Feb 22 2020 08:29:23 %S A261516 1,1,0,0,0,2,0,18,66,382,1104,4138,15324,61644,325456,2320948, %T A261516 17660110,148271962,1171109228,9257051746 %N A261516 Number of perfect rhythmic tilings of [0,3n-1] with triples. %C A261516 A perfect tiling of the line with triples consists of groups of three evenly spaced points, each group having a different common interval such that all points of the line are covered. %D A261516 J. P. Delahaye, La musique mathématique de Tom Johnson, in Mathématiques pour le plaisir, Belin-Pour la Science, Paris, 2010. %H A261516 J. P. Delahaye, <a href="http://www.pourlascience.fr/ewb_pages/a/article-la-musique-mathematique-de-tom-johnson-21813.php">La musique mathématique de Tom Johnson</a>, Pour la Science, 325, Nov 2004, pp. 88-93. %H A261516 Tom Johnson, <a href="http://recherche.ircam.fr/equipes/repmus/mamux/documents/Perfectrhythmictilings.html">Perfect Rhythmic Tilings</a>, Lecture delivered at MaMuX meeting, IRCAM, January 24, 2004. %H A261516 Tom Johnson, <a href="http://web.archive.org/web/20180504223959/http://editions75.com/Articles/Tiling%20in%20my%20music.pdf">Tiling in My music</a>, August, 2008. %e A261516 For n=1, there is 1 such tiling: (0,1,2). %e A261516 For n=5, there are 2 such tilings: (2,3,4), (8,10,12), (5,9,13), (1,6,11), (0,7,14) and its mirror, that have these distinct common differences: 1,2,4,5,7. %Y A261516 Cf. A060963, A104429, A261517, A285527. %K A261516 nonn,more %O A261516 0,6 %A A261516 _Michel Marcus_, Aug 23 2015 %E A261516 a(16)-a(17) from _Alois P. Heinz_, Sep 16 2015 %E A261516 a(18)-a(19) from _Fausto A. C. Cariboni_, Mar 27 2017 %E A261516 a(0)=1 prepended by _Seiichi Manyama_, Feb 21 2020