cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261520 Expansion of Product_{k>=1} ((1+x^k)/(1-x^k))^(3^k).

Original entry on oeis.org

1, 6, 36, 200, 1038, 5160, 24776, 115632, 527172, 2355998, 10349448, 44783064, 191211512, 806737800, 3367294320, 13918479872, 57020736942, 231697484304, 934399998412, 3742041461976, 14888854356840, 58881590423856, 231542984619720, 905666813058384
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 23 2015

Keywords

Comments

Convolution of A144067 and A256142.
In general, for m > 1, if g.f. = Product_{k>=1} ((1+x^k)/(1-x^k))^(m^k), then a(n) ~ m^n * exp(2*sqrt(2*n) - 1 + c) / (sqrt(Pi) * 2^(3/4) * n^(3/4)), where c = 2 * Sum_{j>=1} 1/((2*j+1)*(m^(2*j)-1)).

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[((1 + x^k)/(1 - x^k))^(3^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ 3^n * exp(2*sqrt(2*n) - 1 + c) / (sqrt(Pi) * 2^(3/4) * n^(3/4)), where c = 2 * Sum_{j>=1} 1/((2*j+1)*(3^(2*j)-1)) = 0.0887630729103166089354170592729856346...