cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261530 Numbers k such that k^2 + 1 = p*q*r*s where p,q,r,s are distinct primes and the sum p+q+r+s is a perfect square.

This page as a plain text file.
%I A261530 #19 Aug 28 2015 15:52:25
%S A261530 173,187,477,565,965,1237,1277,1437,1525,1636,2452,2587,2608,2653,
%T A261530 2827,2885,2971,3197,3388,3412,3435,3477,3848,3891,4188,4237,4492,
%U A261530 4724,5333,5728,5899,6272,7088,7108,7421,8363,8541,9379,9652,10227,10872,11581,12237
%N A261530 Numbers k such that k^2 + 1 = p*q*r*s where p,q,r,s are distinct primes and the sum p+q+r+s is a perfect square.
%C A261530 The primes in the sequence are 173, 1237, 1277, 2971, 5333, 8363, 19387, 20773, ...
%C A261530 The corresponding squares p+q+r+s are 121, 289, 441, 289, 529, 9025, 841, 5625, 529, 196, 5476, 3025, ...
%e A261530 173 is in the sequence because 173^2 + 1 = 2*5*41*73 and 2 + 5 + 41 + 73 = 11^2.
%p A261530 with(numtheory):
%p A261530 for n from 1 to 20000 do:
%p A261530   y:=factorset(n^2+1):n0:=nops(y):
%p A261530    if n0=4 and bigomega(n^2+1)=4 and
%p A261530    sqrt(y[1]+y[2]+y[3]+y[4])=floor(sqrt(y[1]+y[2]+y[3]+y[4]))
%p A261530    then
%p A261530    printf(`%d, `, n):
%p A261530    else
%p A261530    fi:
%p A261530 od:
%o A261530 (PARI) isok(n) = my(f = factor(n^2+1)); (#f~== 4) && (vecmax(f[,2]) == 1) && issquare(vecsum(f[,1])) ; \\ _Michel Marcus_, Aug 24 2015
%Y A261530 Cf. A002522, A261529.
%K A261530 nonn
%O A261530 1,1
%A A261530 _Michel Lagneau_, Aug 24 2015