cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261536 Primes p such that p^5 + 2 is also prime.

This page as a plain text file.
%I A261536 #14 Sep 08 2022 08:46:13
%S A261536 11,149,179,197,281,317,389,401,419,491,509,587,977,1019,1217,1289,
%T A261536 1367,1499,1607,1637,2039,2111,2339,2459,2609,2801,2897,3119,3221,
%U A261536 3359,3701,3767,3917,4451,4517,4871,5237,5531,5717,5879,5927,6197,6311,6959,7151
%N A261536 Primes p such that p^5 + 2 is also prime.
%C A261536 Subsequence of primes of A216976. - _Michel Marcus_, Aug 24 2015
%C A261536 All terms == 5 (mod 6). - _Robert Israel_, Sep 22 2019
%H A261536 Robert Israel, <a href="/A261536/b261536.txt">Table of n, a(n) for n = 1..10000</a>
%e A261536 11^5 + 2 = 161053 is a prime.
%p A261536 filter:= proc(p) isprime(p) and isprime(p^5+2) end proc:
%p A261536 select(filter, [seq(i,i=5..10000,6)]); # _Robert Israel_, Sep 22 2019
%t A261536 Select[Prime[Range[1000]], PrimeQ[#^5 + 2] &]
%o A261536 (Magma) [p: p in PrimesUpTo(12000) | IsPrime(p^5+2)];
%Y A261536 Cf. primes p such that p^k+2 is also prime: A001359 (k=1), A048637 (k=3), this sequence (k=5), A261537 (k=7), A261538 (k=9).
%Y A261536 Cf. A000040.
%K A261536 nonn,easy
%O A261536 1,1
%A A261536 _Vincenzo Librandi_, Aug 24 2015