cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261538 Primes p such that p^9 + 2 is also prime.

This page as a plain text file.
%I A261538 #23 Sep 08 2022 08:46:13
%S A261538 11,41,101,227,461,587,641,887,977,1097,1217,1559,2039,2129,2357,3221,
%T A261538 3491,3677,3917,4019,4547,5009,5261,5279,5639,6221,6359,6599,6719,
%U A261538 7187,7907,8147,9767,9929,10211,10391,11177,11549,11801,11939,12197,12671,13907
%N A261538 Primes p such that p^9 + 2 is also prime.
%C A261538 All terms == 5 mod 6. _Robert Israel_, Aug 27 2015
%H A261538 Robert Israel, <a href="/A261538/b261538.txt">Table of n, a(n) for n = 1..10000</a>
%e A261538 11 is in the sequence because 11^9 + 2 = 2357947693 is a prime.
%p A261538 select(t -> isprime(t) and isprime(t^9+2), [seq(6*i-1, i=1..10^4)]); # _Robert Israel_, Aug 27 2015
%t A261538 Select[Prime[Range[2000]], PrimeQ[#^9 + 2] &]
%o A261538 (Magma) [p: p in PrimesUpTo(20000) | IsPrime(p^9+2)];
%o A261538 (PARI) forprime(p=2, 10^4, if (isprime(p^9+2), print1(p, ", "))) \\ _Anders Hellström_, Aug 27 2015
%o A261538 (PARI) list(lim)=my(v=List(),t); forprime(p=2,lim, if(isprime(p^9+2), listput(v,p))); Vec(v) \\ _Charles R Greathouse IV_, Aug 27 2015
%Y A261538 Subsequence of A007528.
%Y A261538 Cf. A000040.
%Y A261538 Cf. similar sequences listed in A261536.
%K A261538 nonn
%O A261538 1,1
%A A261538 _Vincenzo Librandi_, Aug 24 2015