This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A261546 #33 Sep 08 2022 08:46:13 %S A261546 48,58,1688,2948,28338,36998,38648,96248,100308,133458,136798,187538, %T A261546 207088,224508,253808,309738,375348,545048,598348,607688,659548, %U A261546 672398,793958,1055648,1055688,1140008,1270408,1317808,1388398,1399098,1529488,1597008,1655338 %N A261546 Numbers k such that the five numbers k^2+1, (k+1)^2+1, ..., (k+4)^2+1 are all semiprime. %C A261546 a(n) == 8 (mod 10). %C A261546 a(15017) > 10^10. - _Hiroaki Yamanouchi_, Oct 03 2015 %H A261546 Hiroaki Yamanouchi, <a href="/A261546/b261546.txt">Table of n, a(n) for n = 1..15016</a> %e A261546 48 is in the sequence because of these five semiprimes: %e A261546 48^2+1 = 2305 = 5*461; %e A261546 49^2+1 = 2402 = 2*1201; %e A261546 50^2+1 = 2501 = 41*61; %e A261546 51^2+1 = 2602 = 2*1301; %e A261546 52^2+1 = 2705 = 5*541. %p A261546 with(numtheory): %p A261546 n:=5: %p A261546 for k from 1 to 10^6 do: %p A261546 jj:=0: %p A261546 for m from 0 to n-1 do: %p A261546 x:=(k+m)^2+1:d0:=bigomega(x): %p A261546 if d0=2 %p A261546 then %p A261546 jj:=jj+1: %p A261546 else %p A261546 fi: %p A261546 od: %p A261546 if jj=n %p A261546 then %p A261546 printf(`%d, `,k): %p A261546 else %p A261546 fi: %p A261546 od: %t A261546 PrimeFactorExponentsAdded[n_]:=Plus@@Flatten[Table[#[[2]], {1}]&/@FactorInteger[n]]; Select[Range[2 10^5], PrimeFactorExponentsAdded[#^2+1] == PrimeFactorExponentsAdded[#^2 + 2 # + 2]== PrimeFactorExponentsAdded[#^2 + 4 # + 5]== PrimeFactorExponentsAdded[#^2 + 6 # + 10]== PrimeFactorExponentsAdded[#^2 + 8 # + 17] == 2 &] (* _Vincenzo Librandi_, Aug 24 2015 *) %o A261546 (PARI) has(n) = bigomega(n^2+1)==2; %o A261546 isok(n) = has(n) && has(n+1) && has(n+2) && has(n+3) && has(n+4); \\ _Michel Marcus_, Aug 24 2015 %o A261546 (PARI) %o A261546 a261546() = { %o A261546 nterm = 0; %o A261546 for (i = 0, 10^9, %o A261546 if (isprime(20*i*i + 32*i + 13) && %o A261546 isprime(50*i*i + 90*i + 41) && %o A261546 isprime(50*i*i + 110*i + 61) && %o A261546 isprime(20*i*i + 48*i + 29) && %o A261546 bigomega(100*i*i + 200*i + 101) == 2, %o A261546 nterm += 1; %o A261546 print(nterm, " ", 10 * i + 8); %o A261546 ); %o A261546 ); %o A261546 } \\ - _Hiroaki Yamanouchi_, Oct 03 2015 %o A261546 (PARI) issemi(n)=forprime(p=2,97, if(n%p==0, return(isprime(n/p)))); bigomega(n)==2 %o A261546 list(lim)=my(v=List()); forstep(k=48,lim,[10,30,10], if(issemi(k^2+1) && issemi((k+1)^2+1) && issemi((k+3)^2+1) && issemi((k+4)^2+1) && issemi((k+2)^2+1), listput(v,k))); Vec(v) \\ _Charles R Greathouse IV_, Jul 06 2017 %o A261546 (Magma) IsSemiprime:=func< n | &+[k[2]: k in Factorization(n)] eq 2 >; [ n: n in [1..3*10^5] | IsSemiprime(n^2+1) and IsSemiprime(n^2+2*n+2)and IsSemiprime(n^2+4*n+5)and IsSemiprime(n^2+6*n+10)and IsSemiprime(n^2+8*n+17)]; // _Vincenzo Librandi_, Aug 24 2015 %Y A261546 Subsequence of A085722. %Y A261546 Cf. A001358, A144255. %K A261546 nonn,less %O A261546 1,1 %A A261546 _Michel Lagneau_, Aug 24 2015 %E A261546 a(18)-a(33) from _Hiroaki Yamanouchi_, Oct 03 2015