cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261592 9-Modular Catalan Numbers C_{n,9}.

This page as a plain text file.
%I A261592 #31 Mar 07 2020 11:43:29
%S A261592 1,1,2,5,14,42,132,429,1430,4862,16795,58773,207907,742220,2670564,
%T A261592 9674496,35256723,129164090,475418625,1757248194,6519768464,
%U A261592 24272733060,90648139140,339497371575,1274821281747,4798525000860,18102238168134,68430875696534
%N A261592 9-Modular Catalan Numbers C_{n,9}.
%C A261592 Definition: Given a primitive k-th root of unity w, a binary operation a*b=a+wb, and sufficiently general fixed complex numbers x_0, ..., x_n, the k-modular Catalan numbers C_{n,k} enumerate parenthesizations of x_0*x_1*...*x_n that give distinct values.
%C A261592 Theorem: C_{n,k} enumerates the following objects:
%C A261592 (1) binary trees with n internal nodes avoiding a certain subtree (i.e., comb_k^{+1}),
%C A261592 (2) plane trees with n+1 nodes whose non-root nodes have degree less than k,
%C A261592 (3) Dyck paths of length 2n avoiding a down-step followed immediately by k consecutive up-steps,
%C A261592 (4) partitions with n nonnegative parts bounded by the staircase partition (n-1,n-2,...,1,0) such that each positive number appears fewer than k times,
%C A261592 (5) standard 2-by-n Young tableaux whose top row avoids contiguous labels of the form i,j+1,j+2,...,j+k for all i<j, and
%C A261592 (6) permutations of {1,2,...,n} avoiding 1-3-2 and 23...(k+1)1.
%H A261592 Andrew Howroyd, <a href="/A261592/b261592.txt">Table of n, a(n) for n = 0..200</a>
%H A261592 Nickolas Hein, Jia Huang, <a href="http://arxiv.org/abs/1508.01688">Modular Catalan Numbers</a>, arXiv:1508.01688 [math.CO], 2015-2016.
%F A261592 sum( 1<=l<=n, (l/n)sum( m_1+...+m_k=n and m_2+2m_3+...+(k-1)m_k=n-l , MC(n;m_1,...,m_k) ) ), where MC(n;m_1,...,m_k) is the multinomial coefficient associated to the multiset (m_1,...,m_k).
%F A261592 G.f.: 1/(1-x*G(x)) where G(x) is g.f. of A291823. - _Andrew Howroyd_, Nov 29 2017
%e A261592 The Catalan number C_10=16796 counts the parenthesizations of x_1*...*x_11 where * is arbitrary. Defining * and w as above and writing x_i compactly as xi, we have x1*(x2*(x3*(x4*(x5*(x6*(x7*(x8*(x9*(x10*(x11)))))))))) = x1+wx2+w^2x3+w^3x4+w^4x5+w^5x6+w^6x7+w^7x8+w^8x9+x10+wx11 = x1*(x2*(x3*(x4*(x5*(x6*(x7*(x8*(x9*(x10)))))))))*(x11). For n=10 and k=9, these are the only parenthesizations that give the same value for x1*...*x11, so C_{10,9}=16796-1=16795.
%t A261592 terms = 30; col[k_] := Module[{G}, G = InverseSeries[x*(1 - x)/(1 - x^k) + O[x]^terms, x]; CoefficientList[1/(1 - G), x]];
%t A261592 col[9] (* _Jean-François Alcover_, Dec 05 2017, after _Andrew Howroyd_ *)
%o A261592 (PARI) Vec(1/(1-serreverse(x*(1-x)/(1-x^9) + O(x*x^25)))) \\ _Andrew Howroyd_, Nov 29 2017
%o A261592 (Sage)
%o A261592 def C(k):
%o A261592     print(1)
%o A261592     for n in range(1,51):
%o A261592         f = ((1-x^k)/(1-x))^n # ((x+1)^2-x^2*(x/(x+1))^(k-2))^n
%o A261592         f = f.simplify_full()
%o A261592         C = 0
%o A261592         for i in range(n):
%o A261592             C = C + (n-i)*f.coefficient(x,i)/n
%o A261592         print(C)
%o A261592 time C(9)
%Y A261592 Column k=9 of A295679.
%Y A261592 C_{n,1} is the all 1's sequence A000012. For C_{n,k} with k=2,3,4 see A011782, A005773, A159772. For k=5,6,7,8 see A261588, A261589, A261590, A261591.
%Y A261592 Cf. A291823.
%K A261592 nonn
%O A261592 0,3
%A A261592 _Nickolas Hein_, Aug 25 2015