This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A261593 #21 Aug 27 2015 18:23:51 %S A261593 4095,10239,11263,12159,12223,12255,12271,12279,12283,14333,15351, %T A261593 15355,15743,15807,18431,19455,19967,20351,20477,22015,22495,22511, %U A261593 24031,24303,24431,24445,25599,26615,26621,27519,27631,27639,28095,28411,28413,28511,28541,28575 %N A261593 Odd numbers n such that the sum of the binary digits of n and n^2 both equal 12. %C A261593 Hare, Laishram, & Stoll show that this sequence is infinite. %C A261593 12 is the least constant for which the associated sequence is known to be infinite. 1 through 8 make finite sequences, the sequences with 9 and 10 are conjectured finite, and the sequence with 11 is unknown. (See Hare-Laishram-Stoll Theorem 1.3 and 1.4 plus section 5.) %C A261593 Odd numbers n such that the sum of the binary digits of n-1 and n^2-1 both equal 11. - _Chai Wah Wu_, Aug 26 2015 %H A261593 Charles R Greathouse IV, <a href="/A261593/b261593.txt">Table of n, a(n) for n = 1..1329</a> %H A261593 K. G. Hare, S. Laishram, and T. Stoll, <a href="http://arxiv.org/abs/1001.4170">The sum of digits of n and n^2</a>, International Journal of Number Theory 7:7 (2011), pp. 1737-1752. %e A261593 4095 = 111111111111_2 and 4095^2 = 111111111110000000000001_2 both have 12 1s in binary. %t A261593 Select[2 Range@ 15000 - 1, Total@ IntegerDigits[#, 2] == 12 && Total@ IntegerDigits[#^2, 2] == 12 &] (* _Michael De Vlieger_, Aug 27 2015 *) %o A261593 (PARI) is(n)=n%2 && hammingweight(n)==12 && hammingweight(n^2)==12 %o A261593 (PARI) \\ List the elements below 2^(N+1). %o A261593 go(N)=my(v=List(),n); forvec(u=vector(11,i,[1,N-11+i]), n=sum(i=1,11,2^u[i])+1; if(hammingweight(n^2)==12, listput(v,n)), 2); Set(v) %o A261593 (Python) %o A261593 from itertools import combinations %o A261593 A261593_list = [] %o A261593 for c in combinations((2**x for x in range(15)),11): %o A261593 n = sum(c) %o A261593 if sum(int(d) for d in format(n*(n+1),'b')) == 11: %o A261593 A261593_list.append(2*n+1) %o A261593 A261593_list = sorted(A261593_list) # _Chai Wah Wu_, Aug 26 2015 %Y A261593 Subsequence of A261586 and hence of A077436. %K A261593 nonn,base %O A261593 1,1 %A A261593 _Charles R Greathouse IV_, Aug 25 2015