A261613 Decimal expansion of the Markoff number asymptotic density constant.
1, 8, 0, 7, 1, 7, 1, 0, 4, 7, 1, 1, 8, 0, 6, 4, 7, 8, 0, 5, 7, 7, 9, 2, 6, 4, 9, 0, 4, 9, 1, 6, 7, 6, 2, 1, 4, 7, 6, 3, 0, 5, 6, 2, 7, 6, 7, 0, 8, 8, 2, 7, 3, 4, 8, 0, 5, 3, 8, 8, 8, 9, 6, 6, 5, 0, 5, 6, 0, 7, 6, 8
Offset: 0
Examples
C = 0.18071710471180647805779264904916762147630562767088273...
References
- Richard Guy, "Unsolved Problems in Number Theory" (section D12).
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.31.3 Markov-Hurwitz Equation, p. 201.
- Don B. Zagier, Distribution of Markov numbers, Abstract 796-A37, Notices Amer. Math. Soc. 26 (1979) A-543.
Links
- Don Zagier, On the number of Markoff numbers below a given bound, Mathematics of Computation 39:160 (1982), pp. 709-723.
- Jean-François Alcover, Mathematica program
Crossrefs
Cf. A002559 (Markoff numbers).
Formula
C = (3/Pi^2) lim_{N->inf} Sum_{(p,q,r),q<=N
= (3/Pi^2) Sum_{(p,q,r)} c(p,q,r)(f(p)+f(q)-f(r))/(f(p)f(q)f(r))
where the sums are over Markoff triples (p,q,r) with p<=q<=r, c(p,q,r)=1 except for c(1,1,1)=c(1,1,2)=1/2 and f(x) = log ((3x+sqrt(9x^2-4))/2) = arc cosh (3x/2).
The second version demonstrates the rapid convergence on observing that f(p)+f(q)-f(r) = O(1/r^2).
Extensions
Digits to a(72) by using Markoff numbers up to 10^40, from Christopher E. Thompson, Aug 28 2015
Comments