cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A265827 Carmichael numbers n such that n-1 is not a practical number.

Original entry on oeis.org

63973, 126217, 748657, 4463641, 6054985, 9890881, 10837321, 19384289, 26921089, 31146661, 34901461, 41471521, 53711113, 76595761, 140241361, 144218341, 150846961, 151530401, 169057801, 171454321, 171679561, 172430401, 228842209, 277241401, 280761481
Offset: 1

Views

Author

Frank M Jackson, Dec 16 2015

Keywords

Comments

Most Carmichael numbers (odd) have practical number companions (even) that are 1 less. This sequence identifies the exceptions. However Carmichael numbers appear to have no practical number companions that are 1 more.

Examples

			a(1)=63973=7*13*19*37. It is a Carmichael number because its prime factors less 1 are 6, 12, 18, 36 and this set are all divisors of 63973-1=2^2*3^2*1777 that is not a practical number. It is the first such occurrence.
		

Crossrefs

Programs

  • Mathematica
    CarmichaelQ[n_] := If[Mod[n, CarmichaelLambda[n]]==1&&!PrimeQ[n], True, False]; PracticalQ[n_] := Module[{f, p, e, prod=1, ok=True}, If[n<1||(n>1&&OddQ[n]), False, If[n==1, True, f=FactorInteger[n]; {p, e}=Transpose[f]; Do[If[p[[i]]>1+DivisorSigma[1, prod], ok=False; Break[]]; prod=prod*p[[i]]^e[[i]], {i, Length[p]}]; ok]]]; Select[2Range[10^7]+1, CarmichaelQ[#]&&!PracticalQ[#-1] &]
  • PARI
    is_c(n) = {my(f); bittest(n, 0) && !for(i=1, #f=factor(n)~, (f[2, i]==1 && n%(f[1, i]-1)==1)||return) && #f>1}
    is_p(n) = bittest(n, 0) && return(n==1); my(P=1); n && !for(i=2, #n=factor(n)~, n[1, i]>1+(P*=sigma(n[1, i-1]^n[2, i-1])) && return);
    forcomposite(n=561, 1e10, if(is_c(n) && !is_p(n-1), print1(n, ", "))) \\ Altug Alkan, Dec 16 2015

Extensions

More terms from Altug Alkan, Dec 16 2015
Showing 1-1 of 1 results.