A261622 Decimal expansion of the Dirichlet beta function at 1/3.
6, 1, 7, 8, 5, 5, 0, 8, 8, 8, 4, 8, 8, 5, 2, 0, 6, 6, 0, 7, 2, 5, 3, 8, 9, 9, 4, 7, 2, 7, 9, 9, 3, 1, 6, 5, 7, 1, 0, 6, 2, 3, 5, 4, 7, 8, 9, 9, 3, 8, 6, 5, 0, 0, 2, 2, 5, 5, 1, 5, 2, 8, 2, 2, 9, 5, 6, 0, 7, 7, 8, 0, 5, 2, 7, 2, 5, 0, 4, 4, 6, 5, 4, 1, 0, 1, 3, 9, 3, 4, 6, 1, 5, 5, 3, 9, 9, 5, 7, 0, 3, 7, 5, 6, 1
Offset: 0
Examples
0.6178550888488520660725389947279931657106235478993865002255152822956...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- Eric Weisstein's MathWorld, Dirichlet Beta Function
- Wikipedia, Dirichlet beta function
Crossrefs
Programs
-
Maple
evalf(Sum((-1)^n/(2*n+1)^(1/3), n=0..infinity), 120); # Vaclav Kotesovec, Aug 27 2015
-
Mathematica
RealDigits[DirichletBeta[1/3],10,105]//First
-
PARI
beta(x)=(zetahurwitz(x, 1/4)-zetahurwitz(x, 3/4))/4^x beta(1/3) \\ Charles R Greathouse IV, Oct 18 2024
Formula
beta(1/3) = (zeta(1/3, 1/4) - zeta(1/3, 3/4))/2^(2/3).