cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261622 Decimal expansion of the Dirichlet beta function at 1/3.

Original entry on oeis.org

6, 1, 7, 8, 5, 5, 0, 8, 8, 8, 4, 8, 8, 5, 2, 0, 6, 6, 0, 7, 2, 5, 3, 8, 9, 9, 4, 7, 2, 7, 9, 9, 3, 1, 6, 5, 7, 1, 0, 6, 2, 3, 5, 4, 7, 8, 9, 9, 3, 8, 6, 5, 0, 0, 2, 2, 5, 5, 1, 5, 2, 8, 2, 2, 9, 5, 6, 0, 7, 7, 8, 0, 5, 2, 7, 2, 5, 0, 4, 4, 6, 5, 4, 1, 0, 1, 3, 9, 3, 4, 6, 1, 5, 5, 3, 9, 9, 5, 7, 0, 3, 7, 5, 6, 1
Offset: 0

Views

Author

Jean-François Alcover, Aug 27 2015

Keywords

Examples

			0.6178550888488520660725389947279931657106235478993865002255152822956...
		

Crossrefs

Cf. A003881 (beta(1)=Pi/4), A006752 (beta(2)=Catalan), A153071 (beta(3)), A175572 (beta(4)), A175571 (beta(5)), A175570 (beta(6)), A261623 (beta(1/4)), A261624 (beta(1/5)).

Programs

  • Maple
    evalf(Sum((-1)^n/(2*n+1)^(1/3), n=0..infinity), 120); # Vaclav Kotesovec, Aug 27 2015
  • Mathematica
    RealDigits[DirichletBeta[1/3],10,105]//First
  • PARI
    beta(x)=(zetahurwitz(x, 1/4)-zetahurwitz(x, 3/4))/4^x
    beta(1/3) \\ Charles R Greathouse IV, Oct 18 2024

Formula

beta(1/3) = (zeta(1/3, 1/4) - zeta(1/3, 3/4))/2^(2/3).