A261623 Decimal expansion of the Dirichlet beta function at 1/4.
5, 9, 0, 7, 2, 3, 0, 5, 6, 4, 4, 2, 4, 9, 4, 7, 3, 1, 8, 6, 5, 9, 5, 9, 1, 5, 3, 5, 1, 1, 5, 6, 2, 0, 5, 9, 7, 9, 8, 3, 6, 7, 4, 1, 7, 2, 3, 9, 1, 1, 4, 4, 0, 0, 8, 2, 7, 7, 1, 8, 7, 6, 5, 9, 3, 0, 0, 5, 8, 3, 1, 8, 2, 0, 6, 6, 4, 5, 9, 6, 0, 9, 6, 9, 2, 8, 7, 7, 2, 6, 1, 3, 4, 1, 4, 2, 0, 1, 1, 7, 3, 9, 4
Offset: 0
Examples
0.59072305644249473186595915351156205979836741723911440082771876593...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- Eric Weisstein's MathWorld, Dirichlet Beta Function
- Wikipedia, Dirichlet beta function
Crossrefs
Programs
-
Maple
evalf(Sum((-1)^n/(2*n+1)^(1/4), n=0..infinity), 120); # Vaclav Kotesovec, Aug 27 2015
-
Mathematica
RealDigits[DirichletBeta[1/4],10,103]//First
-
PARI
beta(x)=(zetahurwitz(x, 1/4)-zetahurwitz(x, 3/4))/4^x beta(1/4) \\ Charles R Greathouse IV, Oct 18 2024
Formula
beta(1/4) = (zeta(1/4, 1/4) - zeta(1/4, 3/4))/sqrt(2).