A261641 Number of practical numbers q such that n+(n mod 2)-q and n-(n mod 2)+q are both practical numbers.
1, 0, 1, 1, 2, 1, 2, 1, 2, 3, 2, 3, 3, 2, 1, 3, 3, 3, 3, 4, 3, 4, 4, 6, 4, 2, 2, 4, 3, 5, 4, 5, 4, 4, 5, 8, 5, 2, 3, 5, 3, 6, 4, 7, 4, 2, 5, 11, 6, 1, 4, 7, 3, 7, 4, 7, 5, 4, 6, 11, 4, 2, 3, 8, 5, 8, 3, 9, 5, 2, 5, 13, 6, 2, 2, 7, 3, 9, 4, 9
Offset: 1
Keywords
Examples
a(15) = 1 since 4, 15-(4-1) = 12 and 15+(4-1) = 18 are all practical. a(2206) = 1 since 2106, 2206-2106 = 100 and 2206+2106 = 4312 are all practical.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- G. Melfi, On two conjectures about practical numbers, J. Number Theory 56 (1996) 205-210 [MR96i:11106].
- Zhi-Wei Sun, Conjectures involving primes and quadratic forms, arXiv:1211.1588 [math.NT], 2012-2015.
Programs
-
Mathematica
f[n_]:=FactorInteger[n] Pow[n_, i_]:=Part[Part[f[n], i], 1]^(Part[Part[f[n], i], 2]) Con[n_]:=Sum[If[Part[Part[f[n], s+1], 1]<=DivisorSigma[1, Product[Pow[n, i], {i, 1, s}]]+1, 0, 1], {s, 1, Length[f[n]]-1}] pr[n_]:=n>0&&(n<3||Mod[n, 2]+Con[n]==0) Do[r=0;Do[If[pr[q]&&pr[n+Mod[n,2]-q]&&pr[n-Mod[n,2]+q],r=r+1],{q,1,n}];Print[n," ",r];Continue,{n,1,80}]
Comments