cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261641 Number of practical numbers q such that n+(n mod 2)-q and n-(n mod 2)+q are both practical numbers.

Original entry on oeis.org

1, 0, 1, 1, 2, 1, 2, 1, 2, 3, 2, 3, 3, 2, 1, 3, 3, 3, 3, 4, 3, 4, 4, 6, 4, 2, 2, 4, 3, 5, 4, 5, 4, 4, 5, 8, 5, 2, 3, 5, 3, 6, 4, 7, 4, 2, 5, 11, 6, 1, 4, 7, 3, 7, 4, 7, 5, 4, 6, 11, 4, 2, 3, 8, 5, 8, 3, 9, 5, 2, 5, 13, 6, 2, 2, 7, 3, 9, 4, 9
Offset: 1

Views

Author

Zhi-Wei Sun, Aug 27 2015

Keywords

Comments

Conjecture: a(n) > 0 except for n = 2. Also, for any integer n > 3, there is a practical number q such that n-(n mod 2)-q and n+(n mod 2)+q are both practical numbers.
This is an analog of the author's conjecture in A261627, and it is stronger than Margenstern's conjecture proved by Melfi in 1996.

Examples

			a(15) = 1 since 4, 15-(4-1) = 12 and 15+(4-1) = 18 are all practical.
a(2206) = 1 since 2106, 2206-2106 = 100 and 2206+2106 = 4312 are all practical.
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=FactorInteger[n]
    Pow[n_, i_]:=Part[Part[f[n], i], 1]^(Part[Part[f[n], i], 2])
    Con[n_]:=Sum[If[Part[Part[f[n], s+1], 1]<=DivisorSigma[1, Product[Pow[n, i], {i, 1, s}]]+1, 0, 1], {s, 1, Length[f[n]]-1}]
    pr[n_]:=n>0&&(n<3||Mod[n, 2]+Con[n]==0)
    Do[r=0;Do[If[pr[q]&&pr[n+Mod[n,2]-q]&&pr[n-Mod[n,2]+q],r=r+1],{q,1,n}];Print[n," ",r];Continue,{n,1,80}]