This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A261643 #11 Aug 23 2021 13:54:28 %S A261643 1,3,11,57,397,3487,37519,484437,7353473,129104523,2589967603, %T A261643 58757627185,1493762354293,42223299711159,1318186323111959, %U A261643 45185985199663629,1691822823829309801,68865092213424362659,3034735030143197197435,144238580771432519823465,7368717925255301486594525 %N A261643 a(n) = Sum_{k=1..n} (k^2 + k)^(n-k). %C A261643 Row sums of triangle A261642. %F A261643 a(n)^(1/n) ~ n^2/(exp(2)*LambertW(n)^2). - _Vaclav Kotesovec_, Aug 28 2015 %e A261643 Initial terms begin: %e A261643 a(1) = 2^0 = 1; %e A261643 a(2) = 2^1 + 6^0 = 3; %e A261643 a(3) = 2^2 + 6^1 + 12^0 = 11; %e A261643 a(4) = 2^3 + 6^2 + 12^1 + 20^0 = 57; %e A261643 a(5) = 2^4 + 6^3 + 12^2 + 20^1 + 30^0 = 397; %e A261643 a(6) = 2^5 + 6^4 + 12^3 + 20^2 + 30^1 + 42^0 = 3487; ... %t A261643 Table[Sum[(k^2+k)^(n-k),{k,n}],{n,30}] (* _Harvey P. Dale_, Aug 23 2021 *) %o A261643 (PARI) {a(n) = sum(k=1,n, (k + k^2)^(n-k))} %o A261643 for(n=1,30,print1(a(n),", ")) %Y A261643 Cf. A261642. %K A261643 nonn %O A261643 1,2 %A A261643 _Paul D. Hanna_, Aug 27 2015