This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A261647 #7 Oct 01 2015 01:42:16 %S A261647 1,6,18,44,102,216,428,816,1494,2650,4584,7740,12804,20808,33264, %T A261647 52400,81462,125100,189966,285516,425016,627040,917436,1331856, %U A261647 1919332,2746926,3905784,5519352,7754064,10833192,15055216,20817600,28647414,39241336,53517060 %N A261647 Expansion of Product_{k>=0} ((1+x^(2*k+1))/(1-x^(2*k+1)))^3. %H A261647 Vaclav Kotesovec, <a href="http://arxiv.org/abs/1509.08708">A method of finding the asymptotics of q-series based on the convolution of generating functions</a>, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 11. %F A261647 a(n) ~ exp(Pi*sqrt(3*n/2)) * 3^(1/4) / (8 * 2^(1/4) * n^(3/4)). %t A261647 nmax=60; CoefficientList[Series[Product[((1+x^(2*k+1))/(1-x^(2*k+1)))^3,{k,0,nmax}],{x,0,nmax}],x] %Y A261647 Cf. A015128, A156616. %Y A261647 Cf. A080054, A007096, A014969, A261648, A014970, A014972, A103261. %Y A261647 Cf. A261610, A261649, A261651. %Y A261647 Cf. A261611, A261650, A261652. %K A261647 nonn %O A261647 0,2 %A A261647 _Vaclav Kotesovec_, Aug 28 2015