A261653 Number of primes p < n such that n-p-1 and n+p+1 are both prime or both practical.
0, 0, 0, 0, 1, 0, 1, 2, 2, 3, 2, 3, 1, 2, 3, 5, 3, 3, 1, 4, 2, 4, 3, 5, 3, 3, 4, 4, 3, 4, 1, 3, 4, 5, 5, 7, 3, 1, 4, 6, 4, 7, 2, 4, 4, 5, 3, 8, 3, 4, 5, 6, 3, 6, 5, 6, 4, 4, 5, 9, 3, 2, 4, 7, 6, 10, 3, 6, 4, 6, 6, 10, 3, 3, 7, 7, 7, 9, 4, 6
Offset: 1
Keywords
Examples
a(31) = 1 since 11, 31-11-1 = 19 and 31+11+1 = 43 are all prime. a(38) = 17 since 17 is prime, and 38-17-1 = 20 and 38+17+1 = 56 are both practical.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- G. Melfi, On two conjectures about practical numbers, J. Number Theory 56 (1996) 205-210 [MR96i:11106].
- Zhi-Wei Sun, Conjectures involving primes and quadratic forms, arXiv:1211.1588 [math.NT], 2012-2015.
Programs
-
Mathematica
f[n_]:=FactorInteger[n] Pow[n_, i_]:=Part[Part[f[n], i], 1]^(Part[Part[f[n], i], 2]) Con[n_]:=Sum[If[Part[Part[f[n], s+1], 1]<=DivisorSigma[1, Product[Pow[n, i], {i, 1, s}]]+1, 0, 1], {s, 1, Length[f[n]]-1}] pr[n_]:=n>0&&(n<3||Mod[n, 2]+Con[n]==0) p[n_]:=Prime[n] Do[r=0;Do[If[(PrimeQ[n-p[k]-1]&&PrimeQ[n+p[k]+1])||(pr[n-p[k]-1]&&pr[n+p[k]+1]),r=r+1],{k,1,PrimePi[n-1]}];Print[n," ",r];Continue,{n,1,80}]
Comments