cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261675 Minimal number of palindromes in base 10 that add to n.

This page as a plain text file.
%I A261675 #28 Nov 12 2018 16:50:28
%S A261675 1,1,1,1,1,1,1,1,1,1,2,1,2,2,2,2,2,2,2,2,2,3,1,2,2,2,2,2,2,2,2,2,3,1,
%T A261675 2,2,2,2,2,2,2,2,2,3,1,2,2,2,2,2,2,2,2,2,3,1,2,2,2,2,2,2,2,2,2,3,1,2,
%U A261675 2,2,2,2,2,2,2,2,3,1,2,2,2,2,2,2,2,2,2,3,1,2,2,2,2,2,2,2,2,2,3,1,2,1,2,2,2,2
%N A261675 Minimal number of palindromes in base 10 that add to n.
%C A261675 This sequence coincides with A088601 for n <= 301, but differs at n=302.
%C A261675 Although A088601 and this sequence agree for a large number of terms, because of their importance they warrant separate entries.
%C A261675 Cilleruelo and Luca prove that a(n) <= 3 (in fact they prove this for any fixed base g>=5). - _Danny Rorabaugh_, Feb 26 2016
%H A261675 N. J. A. Sloane, <a href="/A261675/b261675.txt">Table of n, a(n) for n = 0..10000</a>
%H A261675 Javier Cilleruelo and Florian Luca, <a href="http://arxiv.org/abs/1602.06208">Every positive integer is a sum of three palindromes</a>, arXiv preprint arXiv:1602.06208 [math.NT], 2016.
%H A261675 William D. Banks, Every natural number is the sum of forty-nine palindromes, INTEGERS <a href="http://www.integers-ejcnt.org/vol16.html">17</a> (2016), 9 pp.
%H A261675 James Grime and Brady Haran, <a href="https://www.youtube.com/watch?v=OKhacWQ2fCs">Every Number is the Sum of Three Palindromes</a> (2018), Numberphile video
%o A261675 (PARI) ispal(n)=my(d=digits(n)); d==Vecrev(d);
%o A261675 a(n)=my(L=n\2,d,e); if(ispal(n), return(1)); d=[1]; while((e=fromdigits(d))<=L, if(ispal(n-e), return(2)); my(k=#d,i=(k+1)\2); while(i&&d[i]==9, d[i]=0; d[k+1-i]=0; i--); if(i, d[i]++; d[k+1-i]=d[i], d=vector(#d+1); d[1]=d[#d]=1)); 3; \\ _Charles R Greathouse IV_, Nov 12 2018
%Y A261675 Cf. A002113, A035137, A088601, A260255, A261422.
%K A261675 nonn,base
%O A261675 0,11
%A A261675 _N. J. A. Sloane_, Sep 02 2015