cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261692 Number of "ON" cells after n-th stage in a cellular automaton in a 90-degree wedge on the square grid. (See Comments lines for definition.)

This page as a plain text file.
%I A261692 #44 Apr 02 2017 17:17:42
%S A261692 0,1,4,5,12,17,20,21,36,49,60,69,76,81,84,85,116,145,172,197,220,241,
%T A261692 260,277,292,305,316,325,332,337,340,341,404,465,524,581,636,689,740,
%U A261692 789,836,881,924,965,1004,1041,1076,1109,1140,1169,1196,1221,1244,1265,1284,1301,1316,1329,1340,1349,1356,1361,1364,1365,1492
%N A261692 Number of "ON" cells after n-th stage in a cellular automaton in a 90-degree wedge on the square grid. (See Comments lines for definition.)
%C A261692 In order to construct the structure we use the following rules:
%C A261692 - On the square grid we are in a 90-degree wedge with the vertex located on top of the wedge.
%C A261692 - At stage 0 there are no ON cells, so a(0) = 0.
%C A261692 - At stage 1 we turn ON the nearest cell of the vertex, so a(1) = 1.
%C A261692 - The cells turned ON remain ON forever.
%C A261692 - If n is a power of 2, at stage n we turn "ON" 2*n - 1 connected cells in the n-th row of the structure.
%C A261692 - Otherwise, if n is not a power of 2, at stage n we turn "ON" k - 2 connected cells in the n-th row of the structure, where k is the number of ON cells in row n - 1.
%C A261692 - The "ON" cells of row n must be centered respect to the "ON" cells of row n - 1.
%C A261692 Note that the structure seems to grow into the holes of a virtual structure similar to the SierpiƄski's triangle but using square cells (see example).
%C A261692 A261693 gives the number of cells turned "ON" at n-th stage.
%C A261692 This is analog of A255748, but here we are working on the square grid.
%H A261692 N. J. A. Sloane, <a href="/wiki/Catalog_of_Toothpick_and_CA_Sequences_in_OEIS">Catalog of Toothpick and Cellular Automata Sequences in the OEIS</a>
%H A261692 <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%F A261692 a(n) = (A262620(n) - 1)/4.
%e A261692 Illustration of initial terms (n = 0..15):
%e A261692 ------------------------------------------------------
%e A261692 n  A261692(n)  a(n)                Diagram
%e A261692 ------------------------------------------------------
%e A261692 0      0        0                    /_\
%e A261692 1      1        1                  /_|_|_\
%e A261692 2      3        4                / |_|_|_| \
%e A261692 3      1        5              /_ _ _|_|_ _ _\
%e A261692 4      7       12            / |_|_|_|_|_|_|_| \
%e A261692 5      5       17          /     |_|_|_|_|_|     \
%e A261692 6      3       20        /         |_|_|_|         \
%e A261692 7      1       21      /_ _ _ _ _ _ _|_|_ _ _ _ _ _ _\
%e A261692 8     15       36    / |_|_|_|_|_|_|_|_|_|_|_|_|_|_|_| \
%e A261692 9     13       49        |_|_|_|_|_|_|_|_|_|_|_|_|_|
%e A261692 10    11       60          |_|_|_|_|_|_|_|_|_|_|_|
%e A261692 11     9       69            |_|_|_|_|_|_|_|_|_|
%e A261692 12     7       76              |_|_|_|_|_|_|_|
%e A261692 13     5       81                |_|_|_|_|_|
%e A261692 14     3       84                  |_|_|_|
%e A261692 15     1       85                    |_|
%e A261692 ...
%e A261692 After 15 generations there are 85 ON cells in the structure, so a(15) = 85.
%Y A261692 Cf. A001316, A047999, A139250, A147562, A255748, A261693, A262620.
%K A261692 nonn,look
%O A261692 0,3
%A A261692 _Omar E. Pol_, Sep 25 2015