cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261701 Initial member of four twin prime pairs with gap 210 between them.

This page as a plain text file.
%I A261701 #28 Sep 08 2022 08:46:13
%S A261701 599,3917,5021,37361,48779,81929,93281,97157,263399,433049,783149,
%T A261701 821801,906119,908669,1197197,1308497,1308707,1379237,1464809,1908449,
%U A261701 2036861,2341979,2408561,2760671,2804309,3042491,3042701,3042911,3198197,4090649,4543991,5543927
%N A261701 Initial member of four twin prime pairs with gap 210 between them.
%C A261701 More precisely, primes p such that p + 2, p + 210, p + 212, p + 420, p + 422, p + 630, p + 632 are all primes.
%C A261701 All the terms in this sequence are congruent to 2 (mod 3).
%H A261701 K. D. Bajpai and Dana Jacobsen, <a href="/A261701/b261701.txt">Table of n, a(n) for n = 1..10000</a> [first 865 terms from K. D. Bajpai]
%H A261701 Luis Rodriguez and Carlos Rivera, <a href="http://www.primepuzzles.net/conjectures/conj_066.htm">Gaps between consecutive twin pairs</a>, The Prime Puzzles and Problems Connection.
%e A261701 599 appears in the sequence because: (a) {599,601}, {809, 811}, {1019, 1021}, {1229, 1231} are four (not consecutive) twin prime pairs; (b) the gap between each twin prime pair (809 - 599) = (1019 -  809) = (1229 - 1019) = 210.
%p A261701 select(p -> andmap(isprime, [p, p+2, p+210, p+212, p+420, p+422, p+630, p+632]),[seq(p, p=1..10^5)]);
%t A261701 k = 210; Select[Prime@Range[10^7], PrimeQ[# + 2] && PrimeQ[# + k] && PrimeQ[# + k + 2] && PrimeQ[# + 2 k] && PrimeQ[# + 2 k + 2] && PrimeQ[# + 3 k] &&  PrimeQ[# + 3 k + 2] &]
%t A261701 Select[Prime[Range[400000]],AllTrue[#+{2,210,212,420,422,630,632},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* _Harvey P. Dale_, Jul 17 2019 *)
%o A261701 (PARI) forprime(p= 1, 100000, if(isprime(p+2) && isprime(p+210) && isprime(p+212) && isprime(p+420) && isprime(p+422) && isprime(p+630) && isprime(p+632), print1(p,", ")));
%o A261701 (Magma) [p: p in PrimesUpTo (100000) | IsPrime(p+2) and IsPrime(p+210) and IsPrime(p+212) and IsPrime(p+420) and IsPrime(p+422) and IsPrime(p+630) and IsPrime(p+632) ];
%o A261701 (Perl) use ntheory ":all"; say join ", ", grep { is_prime($_+210) && is_prime($_+212) && is_prime($_+420) && is_prime($_+422) && is_prime($_+630) && is_prime($_+632) } @{twin_primes(1e8)}; # _Dana Jacobsen_, Sep 02 2015
%o A261701 (Perl) use ntheory ":all"; say for sieve_prime_cluster(1, 1e8, 2, 210, 212, 420, 422, 630, 632); # _Dana Jacobsen_, Oct 03 2015
%Y A261701 Cf. A001359 (twin primes), A077800, A113274, A253624.
%K A261701 nonn
%O A261701 1,1
%A A261701 _K. D. Bajpai_, Aug 28 2015