cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261725 Lexicographically earliest sequence of distinct terms such that the absolute difference of two successive terms is a power of 10, and can be computed without carry.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50, 60, 61, 62, 63, 64, 65, 66, 67
Offset: 0

Views

Author

Paul Tek, Aug 30 2015

Keywords

Comments

In base 10, two successive terms have the same representation, except for one position, where the digits differ from exactly one unit. This difference can occur on a leading zero.
Conjectured to be a permutation of the nonnegative integers. See A261729 for putative inverse.
a(n) = A003100(n) for n < 101, but a(101) = 180, A003100(101) = 191.
a(n) = A118757(n) for n < 201, but a(201) = 281, A118757(201) = 290.
a(n) = A118758(n) for n < 100, but a(100) = 190, A118758(100) = 109.
a(n) = A174025(n) for n < 100, but a(100) = 190, A174025(100) = 199.
a(n) = A261729(n) for n < 100, but a(100) = 190, A261729(100) = 109.

Crossrefs

Cf. A003100, A118757, A118763, A163252, A261729 (putative inverse).

Programs

  • Perl
    See Links section.