cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261731 Initial member of five twin prime pairs with gap 210 between them.

This page as a plain text file.
%I A261731 #25 Sep 08 2022 08:46:13
%S A261731 1308497,3042491,3042701,7445309,20031101,31572521,44687987,54266291,
%T A261731 141208619,182316521,237416369,357080021,448436321,611641187,
%U A261731 699458411,761126027,774997367,794065967,836452961,915215591,944958941,1009194617,1581935939,1763255561,1871007371
%N A261731 Initial member of five twin prime pairs with gap 210 between them.
%C A261731 More precisely, primes p such that p+2, p+210, p+212, p+420, p+422, p+630, p+632, p+840, p+842 are all primes.
%C A261731 All the terms in this sequence are congruent to 2 (mod 3).
%H A261731 K. D. Bajpai and Dana Jacobsen, <a href="/A261731/b261731.txt">Table of n, a(n) for n = 1..10000</a> [first 46 terms from K. D. Bajpai]
%e A261731 1308497 appears in this sequence because: (a) {1308497, 1308499}, {1308707, 1308709}, {1308917, 1308919}, {1309127, 1309129}, and {1309337, 1309339} are five twin prime pairs; (b) the gap between each twin prime pair {1308707 - 1308497} = {1308917-1308707} = {1309127 - 1308917} = {1309337 - 1309127} = 210.
%p A261731 select(p -> andmap(isprime, [p, p+2, p+210, p+212, p+420, p+422, p+630, p+632, p+840, p+842]),[seq(p, p=1..2*10^7)]);
%t A261731 k = 210; Select[Prime@Range[6*10^7], PrimeQ[# + 2] && PrimeQ[# + k] && PrimeQ[# + k + 2] && PrimeQ[# + 2 k] && PrimeQ[# + 2 k + 2] && PrimeQ[# + 3 k] &&   PrimeQ[# + 3 k + 2] && PrimeQ[# + 4 k] && PrimeQ[# + 4 k + 2] &]
%t A261731 Select[Prime[Range[93*10^6]],AllTrue[#+{2,210,212,420,422,630,632,840,842},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* _Harvey P. Dale_, Apr 05 2018 *)
%o A261731 (PARI) forprime(p= 1,3*10^9, if(isprime(p+2) && isprime(p+210) && isprime(p+212) && isprime(p+420) && isprime(p+422) && isprime(p+630) && isprime(p+632) && isprime(p+840) && isprime(p+842), print1(p,", ")));
%o A261731 (Magma) [p: p in PrimesUpTo (100000) | IsPrime(p+2) and IsPrime(p+210) and IsPrime(p+212) and IsPrime(p+420) and IsPrime(p+422) and IsPrime(p+630) and IsPrime(p+632) and IsPrime(p+840) and IsPrime(p+842) ];
%o A261731 (Perl) use ntheory ":all"; say for sieve_prime_cluster(1,1e10, 2, 210, 212, 420, 422, 630, 632, 840, 842); # _Dana Jacobsen_, Oct 02 2015
%Y A261731 Cf. A077800, A113274, A253624, A261701.
%K A261731 nonn
%O A261731 1,1
%A A261731 _K. D. Bajpai_, Aug 30 2015