This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A261736 #15 Feb 13 2024 11:36:26 %S A261736 1,-1,0,-1,1,-1,2,-2,2,-3,3,-3,5,-5,5,-7,8,-8,11,-12,12,-16,17,-18,23, %T A261736 -25,26,-32,35,-37,45,-49,52,-62,67,-72,85,-92,98,-114,124,-133,153, %U A261736 -166,178,-203,220,-236,268,-290,311,-350,379,-407,456,-493,529 %N A261736 Expansion of Product_{k>=1} (1 + x^(6*k))/(1 + x^k). %H A261736 Seiichi Manyama, <a href="/A261736/b261736.txt">Table of n, a(n) for n = 0..10000</a> %H A261736 David J. Hemmer, <a href="https://arxiv.org/abs/2402.03643">Generating functions for fixed points of the Mullineux map</a>, arXiv:2402.03643 [math.CO], 2024. %H A261736 Vaclav Kotesovec, <a href="http://arxiv.org/abs/1509.08708">A method of finding the asymptotics of q-series based on the convolution of generating functions</a>, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 14. %F A261736 a(n) ~ (-1)^n * exp(sqrt(2*n)*Pi/3) / (2^(7/4)*sqrt(3)*n^(3/4)). %p A261736 seq(coeff(series(mul((1+x^(6*k))/(1+x^k),k=1..n), x,n+1),x,n),n=0..60); # _Muniru A Asiru_, Jul 29 2018 %t A261736 nmax = 100; CoefficientList[Series[Product[(1 + x^(6*k))/(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x] %Y A261736 Cf. A081360 (m=2), A109389 (m=3), A261734 (m=4), A133563 (m=5), A113297 (m=7), A261735 (m=8), A261733 (m=9), A145707 (m=10). %K A261736 sign %O A261736 0,7 %A A261736 _Vaclav Kotesovec_, Aug 30 2015