This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A261740 #11 May 10 2021 04:54:20 %S A261740 1,6,57,398,2955,19158,130453,820554,5280204,32711022,204324819, %T A261740 1249546656,7682267669,46625705988,283766862009,1714704081724, %U A261740 10374896682273,62511439251768,376943252871343,2267304042230202,13643684237963994,81983795625450144 %N A261740 Number of partitions of n where each part i is marked with a word of length i over a senary alphabet whose letters appear in alphabetical order. %H A261740 Alois P. Heinz, <a href="/A261740/b261740.txt">Table of n, a(n) for n = 0..1000</a> %F A261740 a(n) ~ c * 6^n, where c = Product_{k>=2} 1/(1 - binomial(k+5,5)/6^k) = 3.760725122262068858184072984846959348360490081749654779894152320389687335... - _Vaclav Kotesovec_, Oct 11 2017, updated May 10 2021 %F A261740 G.f.: Product_{k>=1} 1 / (1 - binomial(k+5,5)*x^k). - _Ilya Gutkovskiy_, May 09 2021 %p A261740 b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, %p A261740 b(n, i-1)+`if`(i>n, 0, b(n-i, i)*binomial(i+5, 5)))) %p A261740 end: %p A261740 a:= n-> b(n$2): %p A261740 seq(a(n), n=0..30); %Y A261740 Column k=6 of A261718. %K A261740 nonn %O A261740 0,2 %A A261740 _Alois P. Heinz_, Aug 30 2015