A261745 Decimal expansion of -sm(-1), where sm(t) is the Dixonian elliptic function sm(t).
1, 2, 0, 5, 4, 1, 5, 1, 5, 1, 4, 0, 2, 9, 8, 3, 1, 5, 4, 8, 3, 1, 4, 1, 1, 3, 7, 5, 7, 8, 4, 4, 8, 8, 0, 1, 2, 0, 7, 2, 7, 0, 4, 1, 9, 1, 8, 8, 2, 2, 4, 9, 5, 8, 1, 0, 9, 3, 2, 7, 1, 8, 2, 3, 5, 4, 4, 7, 6, 4, 8, 8, 1, 0, 6, 5, 5, 1, 1, 2, 5, 5, 6, 3, 2, 1, 7, 0, 3, 6, 5, 2, 2, 9, 3, 7, 9, 8, 9, 0, 8, 0, 6, 7, 9
Offset: 1
Examples
1.205415151402983154831411375784488012072704191882249581...
Links
- Eric van Fossen Conrad and Philippe Flajolet, The Fermat cubic, elliptic functions, continued fractions and a combinatorial excursion, Séminaire Lotharingien de Combinatoire 54 (2006), Article B54g, page 20.
- Eric Weisstein's MathWorld, Weierstrass Elliptic Function
Programs
-
Mathematica
sm[z_] := 6*WeierstrassP[z, {0, 1/27}]/(1 - 3*WeierstrassPPrime[z, {0, 1/27}]); N[-sm[-1], 105] // RealDigits // First (* or, without using the Weierstrass P function: *) nint[y_?NumericQ] := NIntegrate[1/(1 + w^3)^(2/3), {w, 0, y}, WorkingPrecision -> 105]; smh[t_] := y /. FindRoot[nint[y] == t, {y, t}, WorkingPrecision -> 105]; N[smh[1], 105] // RealDigits // First
Comments