This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A261749 #30 Feb 19 2021 05:27:13 %S A261749 206,224,314,1799,2006,11087,13364,15839,17153,17324,20006,22184, %T A261749 22706,24524,24542,40031,40247,45314,47069,48824,55556,61694,64691, %U A261749 70559,71351,89774,90224,102374,108251,112292,129824,132506,137987,151757,154295,157706,162089,167273,170324,171557,175031 %N A261749 Numbers k where k^2 is an anagram of (k+2)^2. %C A261749 Numbers of the form 2*10^k + 6 where k > 1 always appear in this sequence. %C A261749 Numbers of the form 4*10^k + 31 and 86*10^k + 39 always appear when k > 3. %C A261749 Similar to A072841 but with (n+2)^2 instead of (n+1)^2. %C A261749 All numbers in the sequence are of the form 3n + 2. %C A261749 Multiples of 5 seem to be uncommon. %C A261749 Another subsequence is numbers of the form 5*(10^(5+9*k)-1)/9 + 1, i.e. 4+9*k 5's followed by a 6: 55556, 55555555555556, 55555555555555555555556, etc. - _Robert Israel_, Aug 31 2015 %H A261749 Amiram Eldar, <a href="/A261749/b261749.txt">Table of n, a(n) for n = 1..10000</a> %e A261749 206 is a term in the sequence because 206^2 (42436) and 208^2 (43264) are anagrams. %p A261749 filter:= proc(n) local L1, L2; %p A261749 L1:= convert(n^2,base,10); %p A261749 L2:= convert((n+2)^2,base,10); %p A261749 evalb(sort(L1)=sort(L2)); %p A261749 end proc: %p A261749 select(filter, [3*i+2 $ i = 1..10^5]); # _Robert Israel_, Aug 31 2015 %t A261749 Select[Range[10^4], Sort[IntegerDigits[#^2]] == Sort[IntegerDigits[(# + 2)^2]] &] (* Typo fixed by _Ivan N. Ianakiev_, Sep 02 2015 *) %o A261749 (PARI) isok(n) = vecsort(digits(n^2)) == vecsort(digits((n+2)^2)); \\ _Michel Marcus_, Aug 31 2015 %o A261749 (Python) %o A261749 A261749_list = [n for n in range(1,10**6) if sorted(str(n**2)) == sorted(str((n+2)**2))] # _Chai Wah Wu_, Sep 02 2015 %Y A261749 Cf. A072841. %K A261749 nonn,base,easy %O A261749 1,1 %A A261749 _Dhilan Lahoti_, Aug 30 2015