This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A261750 #21 Sep 30 2015 14:07:16 %S A261750 0,1,2,5,31,163,1576 %N A261750 Number of conjugacy classes of two-element generating sets in the symmetric group S_n. %C A261750 Two generating sets are considered to be the same if they differ only by some relabeling of the points, i.e., conjugating by some element of S_n. For instance, the generating set {(1,2), (1,2,3,4)} is the same as {(2,3),(1,2,3,4)} by the relabeling 1->2, 2->3, 3->4, 4->1. As a non-example, the generating sets {(1,2),(1,2,3,4,5)} and {(1,3),(1,2,3,4,5)} are different, since the points in the transpositions are differently placed in the 5-cycle. %o A261750 (GAP) %o A261750 # GAP 4.7 code for calculating the number of distinct 2-generating sets of %o A261750 # symmetric groups. %o A261750 # This code is written for readability, and to minimize package dependencies. %o A261750 # 2015 _Attila Egri-Nagy_ %o A261750 # decides whether the given generating sets generate the symmetric group of %o A261750 # degree n or not %o A261750 IsSn := function(gens,n) %o A261750 return Size(Group(gens))=Factorial(n); %o A261750 end; %o A261750 # returns all degree n permutations (i.e., elements of the symmetric group) %o A261750 AllPermsDegn := function(n) %o A261750 return AsList(SymmetricGroup(IsPermGroup,n)); %o A261750 end; %o A261750 # first 5 entries of A001691 calculated in an inefficient manner %o A261750 # taking all sets of cardinality 2 and check %o A261750 gensets := List([1..5], %o A261750 x->Filtered(Combinations(AllPermsDegn(x),2), %o A261750 y->IsSn(y,x))); %o A261750 Display(List(gensets,Size)); %o A261750 # returns the conjugacy class representative of P under G %o A261750 # calculates the conjugacy class of P and returns the minimum element %o A261750 # P - set of permutations %o A261750 # G - permutation group %o A261750 ConjClRep := function(P, G) %o A261750 return Minimum(Set(AsList(G), x-> Set(P, y->y^x))); %o A261750 end; %o A261750 Display(List([1..5], %o A261750 x->Size(Set(gensets[x], %o A261750 y->ConjClRep(y,SymmetricGroup(IsPermGroup,x)))))); %Y A261750 Cf. A001691. %K A261750 nonn,hard,more %O A261750 1,3 %A A261750 _Attila Egri-Nagy_, Aug 30 2015