This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A261751 #11 Dec 24 2019 17:30:39 %S A261751 0,1,2,3,4,6,8,16,23,32,64,91,128,256,512,1024,2048,4096,5793,8192, %T A261751 16384,32768,46341,65536,92682,131072,185364,262144,370728,524288, %U A261751 1048576,2097152,2965821,4194304,5931642,8388608,16777216,33554432,47453133,67108864,94906266 %N A261751 Numbers n with property that binary expansion of n^3 begins with the binary expansion of n. %C A261751 2^k is always a term in this sequence. %C A261751 It appears that all solutions are either a power of 2 or approximately sqrt(2) * a power of 2. - _Andrew Howroyd_, Dec 24 2019 %H A261751 Andrew Howroyd, <a href="/A261751/b261751.txt">Table of n, a(n) for n = 1..1000</a> %e A261751 23 is a term of this sequence because its cube written in base 2 (10111110000111) starts with its representation in base 2 (10111). %t A261751 SetBeginSet[set1_, set2_] := %t A261751 Do[For[i = 1, i <= Length[set1], i++,If[! set1[[i]] == set2[[i]], Return[False]]];Return[True], {1}]; %t A261751 For[k = 0; set = {}, k <= 100000, k++,If[SetBeginSet[IntegerDigits[k, 2], IntegerDigits[k^3, 2]],Print[k]]] %o A261751 (PARI) ok(n)={my(t=n^3); t == 0 || t>>(logint(t,2)-logint(n,2))==n} \\ _Andrew Howroyd_, Dec 23 2019 %o A261751 (PARI) \\ for larger values %o A261751 viable(b,k)={my(p=b^3, q=(b+2^k-1)^3, s=logint(q,2), t=s-logint(b,2)+k); (p>>s)==0 || ((p>>t)<=(b>>k) && (b>>k)<=(q>>t))} %o A261751 upto(n)={ %o A261751 local(L=List([0])); %o A261751 my(recurse(b,k)=; if(b <= n && viable(b,k), k--; if(k<0, listput(L, b), self()(b,k); self()(b+2^k,k)))); %o A261751 for(k=0, logint(n,2), recurse(2^k, k)); %o A261751 Vec(L); %o A261751 } \\ _Andrew Howroyd_, Dec 24 2019 %Y A261751 Base 2 version of A052210. %Y A261751 Cf. A004539. %K A261751 nonn,base,easy %O A261751 1,3 %A A261751 _Dhilan Lahoti_, Aug 30 2015 %E A261751 Terms a(31) and beyond from _Andrew Howroyd_, Dec 23 2019