This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A261762 #39 Apr 13 2017 04:25:29 %S A261762 1,1,1,1,1,4,1,1,10,18,1,1,46,78,108,1,1,166,486,636,780,1,1,856,3096, %T A261762 4896,5760,6600,1,1,3844,21204,40104,52200,58080,63840,1,1,21820, %U A261762 167868,363168,508320,602400,648480,693840,1,1,114076,1370268,3490848,5450400,6720480 %N A261762 Triangle read by rows: T(n,k) is the number of subpermutations of an n-set whose orbits are each of size at most k, and without fixed points. Equivalently, T(n,k) is the number of partial derangements of an n-set each of whose orbits is of size at most k. %C A261762 The OEIS values correct the values b(n,k) in the Laradji-Umar Table 2.1 in column k=2. Note that the row sums (meaning: sums up to the diagonal of the triangle) in Table 2.1 in the article are also incorrect. %C A261762 There were typos in the column (k=2) of the original article. The entry 94 should be 166 and the entry 784 should be 856, which have been corrected. Unlike most triangles the off-diagonal terms are not 0 because T(n, n)= T(n, n+k) for all nonnegative k which is obvious from the definition. %H A261762 A. Laradji and A. Umar, <a href="http://www.researchgate.net/profile/Abdullahi_Umar/publication/261689545_On_the_number_of_subpermutations_with_a_fixed_orbit_size/links/53e0a3f00cf24f90ff60849b.pdf">On the number of subpermutations with fixed orbit size</a>, Ars Combinatoria, 109 (2013), 447-460. %F A261762 T(n,k) = T(n-1,k) + 3(n-1)T(n-2,k) + ... +(k+1)(n-1)(n-2)...(n-k+1)T(n-k,k) if k<=n. %F A261762 T(n,k) = T(n,n) if k>n, not part of the triangle. %F A261762 T(n,0) = T(n,1) = 1. %F A261762 T(n,n) = A144085(n). (Diagonal) %F A261762 G.f.: exp(x+(3x^2)/2+ ... +((k+1)x^k)/k). %e A261762 T(3,2) = 10 because there are 10 subpermutations on {1,2,3}, each of whose orbit is of size at most 2, and without fixed points, namely: Empty map, (1,2) --> (2,1), (1,3) --> (3,1) (2,3) --> (3,2), 1-->2, 1-->3, 2-->1, 2-->3, 3-->1, 3-->2. %e A261762 Triangle starts: %e A261762 1; %e A261762 1, 1; %e A261762 1, 1, 4; %e A261762 1, 1, 10, 18; %e A261762 1, 1, 46, 78, 108; %e A261762 1, 1, 166, 486, 636, 780; %e A261762 ... %p A261762 A261762 := proc(n,k) %p A261762 if k = 0 then %p A261762 1; %p A261762 else %p A261762 if k < 1 then %p A261762 g := 1; %p A261762 elif k < 2 then %p A261762 g := exp(x) ; %p A261762 else %p A261762 g := exp(x+add((j+1)*x^j/j,j=2..k)) ; %p A261762 fi; %p A261762 coeftayl(g,x=0,n) *n! ; %p A261762 end if; %p A261762 end proc: %p A261762 seq(seq( A261762(n,k),k=0..n),n=0..12) ; # _R. J. Mathar_, Nov 04 2015 %t A261762 T[n_, k_] := SeriesCoefficient[ Exp[ x + Sum[ (j+1)*x^j/j, {j, 2, k}]], {x, 0, n}] * n!; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Apr 13 2017 *) %Y A261762 Cf. A157400, A261763, A261764, A261765, A261766, A261767. %K A261762 nonn,tabl %O A261762 0,6 %A A261762 _Samira Stitou_, Sep 21 2015 %E A261762 More terms from _Alois P. Heinz_, Oct 07 2015