This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A261784 #22 Apr 20 2024 04:51:46 %S A261784 1,2,66,5546,893490,235804122,92540869002,50592275219138, %T A261784 36763980389367378,34277110454602760762,39890088439337327537706, %U A261784 56678337951284473917309346,96562013312452672907356749786,194303876852797223949281552591106,455927121076167354458618221923117282 %N A261784 Number of compositions of 2n where each part i is marked with a word of length i over an n-ary alphabet whose letters appear in alphabetical order and all n letters occur at least once in the composition. %H A261784 Alois P. Heinz, <a href="/A261784/b261784.txt">Table of n, a(n) for n = 0..200</a> %F A261784 a(n) = A261781(2n,n). %F A261784 a(n) ~ c * d^n * n!^2 / n, where d = -4 / (log(2)^2 * LambertW(-2*exp(-2)) * (2 + LambertW(-2*exp(-2)))) = 12.85568917366612131932660300054233483234... and c = 0.25886492311146555025177523170232718427705044811049100445591... . - _Vaclav Kotesovec_, Feb 18 2017, updated Apr 20 2024 %p A261784 A:= proc(n, k) option remember; `if`(n=0, 1, %p A261784 add(A(n-j, k)*binomial(j+k-1, k-1), j=1..n)) %p A261784 end: %p A261784 a:= n-> add(A(2*n, n-i)*(-1)^i*binomial(n, i), i=0..n): %p A261784 seq(a(n), n=0..15); %t A261784 A[n_, k_] := A[n, k] = If[n == 0, 1, Sum[A[n - j, k]*Binomial[j + k - 1, k - 1], {j, 1, n}]]; a[n_] := Sum[A[2*n, n - i]*(-1)^i*Binomial[n, i], {i, 0, n}]; Table[a[n], {n, 0, 15}] (* _Jean-François Alcover_, Feb 25 2017, translated from Maple *) %Y A261784 Cf. A261781, A261828. %K A261784 nonn %O A261784 0,2 %A A261784 _Alois P. Heinz_, Aug 31 2015