cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261796 Expansion of Product_{k>=1} (1+x^k)/((1+x^(3*k))*(1+x^(5*k))).

This page as a plain text file.
%I A261796 #7 Sep 01 2015 16:11:34
%S A261796 1,1,1,1,1,1,1,2,2,2,2,3,3,4,5,4,4,5,6,7,8,9,9,10,12,13,14,15,16,17,
%T A261796 20,23,24,26,28,30,33,37,40,42,46,50,55,60,65,68,72,79,86,93,101,108,
%U A261796 114,123,134,144,153,164,174,186,203,219,233,247,263,280
%N A261796 Expansion of Product_{k>=1} (1+x^k)/((1+x^(3*k))*(1+x^(5*k))).
%H A261796 Vaclav Kotesovec, <a href="/A261796/b261796.txt">Table of n, a(n) for n = 0..10000</a>
%F A261796 a(n) ~ exp(Pi*sqrt(7*n/5)/3) * 7^(1/4) / (2*sqrt(3) * 5^(1/4) * n^(3/4)).
%t A261796 nmax=100; CoefficientList[Series[Product[(1+x^k)/((1+x^(3*k))*(1+x^(5*k))), {k, 1, nmax}], {x, 0, nmax}], x]
%Y A261796 Cf. A103257, A098151, A138526, A261797.
%K A261796 nonn
%O A261796 0,8
%A A261796 _Vaclav Kotesovec_, Sep 01 2015