This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A261804 #12 Feb 16 2025 08:33:27 %S A261804 1,1,2,6,7,3,3,8,6,7,3,1,7,0,5,6,6,4,6,4,2,7,8,1,2,4,9,1,8,5,4,9,8,4, %T A261804 2,7,2,2,2,1,9,9,6,9,5,7,4,0,3,6,0,2,9,6,3,8,4,2,3,9,6,0,3,8,6,3,6,6, %U A261804 7,8,3,3,7,5,8,4,3,2,1,0,4,6,8,7,2,4,0,4,1,6,4,1,5,8,5,6,9,9,6,4,6,7,1,3 %N A261804 Decimal expansion of zeta(7/2). %C A261804 Zeta(7/2) appears in the expression of the 8th Madelung constant (A261805). %D A261804 Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Sections 1.10 Madelung's constant, p. 77. %H A261804 Eric Weisstein's MathWorld, <a href="https://mathworld.wolfram.com/RiemannZetaFunction.html">Riemann Zeta Function</a> %H A261804 <a href="/wiki/Index_to_constants#Start_of_section_Z">Index entries for constants related to zeta</a> %e A261804 1.126733867317056646427812491854984272221996957403602963842396... %t A261804 RealDigits[Zeta[7/2], 10, 104] // First %o A261804 (PARI) zeta(7/2) \\ _Charles R Greathouse IV_, Jun 07 2016 %Y A261804 Cf. A059750, A078434, A247041, A261805. %K A261804 nonn,cons,easy %O A261804 1,3 %A A261804 _Jean-François Alcover_, Sep 01 2015